TSR)

搜索文档
UCLA最新!大模型时序推理和Agentic系统的全面综述
自动驾驶之心· 2025-09-28 07:33
当城市早高峰的车流数据实时涌入交通管控系统,当医院的心电图仪持续记录患者的心脏电活动,当股票交易所的行情面板每秒刷新数十次股价波动——这些伴 随时间流逝不断产生的"时间序列数据",早已成为现代社会运转的"数字脉搏"。从金融风控、医疗诊断到能源调度、交通管理,几乎所有关键领域的决策,都依赖 于对这些 时序数据 的深度解读。 过去数十年间,时间序列分析领域涌现出了从经典统计模型(如ARIMA、ETS)到深度学习方法(如LSTM、Transformer)的大量技术,它们在"预测未来""识别 异常"等基础任务上取得了显著进展。例如,早期用LSTM预测未来24小时的城市用电量,用CNN检测心电图中的心律失常片段,这些传统技术早已落地于实际场 景。 但随着应用需求的不断升级,传统方法的"能力边界"逐渐显现。在个性化医疗场景中,医生不仅需要模型判断"患者是否存在心律异常",更需要知道"异常与哪些 生理指标、哪个时间段的活动相关";在自适应风险管理中,基金经理不仅需要股价预测结果,更需要理解"若政策调整,股价可能如何变化"的因果逻辑;在 autonomous 交通系统中,控制器不仅要检测拥堵,还需实时调整信号策略并验证效果— ...