Training Cost

搜索文档
GPU跟ASIC的训练和推理成本对比
傅里叶的猫· 2025-07-10 23:10
芯片供应商及产品规划 - NVIDIA全球市场AI GPU产品线从A100到GB100覆盖2020至2027年,制程从7nm演进至3nm,HBM容量从80GB提升至1024GB [2] - NVIDIA中国市场特供版包括A800/H800/H20等型号,HBM容量最高96GB,部分型号采用GDDR6显存 [2] - AMD MI系列从MI100到MI400规划至2026年,HBM3e容量达288GB,MI400将采用HBM4技术 [2] - Intel AI GPU产品包括MAX系列和Gaudi ASIC,Habana 2采用HBM3e技术容量达288GB [2] - Google TPU v5e至v6采用5nm/3nm制程,HBM3e容量最高384GB [2] - AWS Tranium系列采用Marvell/Alchip设计,Tranium3 Ultra将使用3nm制程和HBM3e [2] 大模型训练成本分析 - 训练Llama-3 400B模型时,TPU v7成本显著低于GPU,呈现断档式优势 [7] - NVIDIA GPU中GB200超级芯片训练成本最低,H100成本最高,验证"买得越多省得越多"规律 [7] - Trainimium2训练成本异常高企,与迭代预期不符 [7] - 硬件成本占比最高的是GPU部分,电力成本占比相对较低 [5][7] 推理成本比较 - AI ASIC在推理场景成本优势显著,比GB200低10倍 [10] - GPU产品中高端型号推理成本反而更高,与训练成本趋势相反 [11] - TPU v5p/v6和Tranium2在推理场景展现最佳性价比 [10][11] 技术参数对比 - GB200超级芯片峰值算力达5000 TFLOPS,是H100的5倍 [12] - HBM3e技术成为2024年主流,NVIDIA/AMD/Intel均采用该内存方案 [2] - 能效比方面GB200达2.25 TFLOPS/Watt,优于H100的1.41 TFLOPS/Watt [12] - MI300X与H100算力接近(981 vs 990 TFLOPS),但能效低7% [12] 供应链动态 - B200芯片已进入期货阶段,国内可接样品订单 [13] - 主要设计合作伙伴包括Broadcom、Marvell和Alchip等厂商 [2] - 行业信息显示3nm制程将在2025-2026年大规模应用于AI芯片 [2][12]