Workflow
VLA自动驾驶
icon
搜索文档
端到端和VLA,正在吸引更多智驾公司的关注......
自动驾驶之心· 2025-10-23 08:04
端到端与VLA自动驾驶行业需求 - 主机厂和供应商对端到端及VLA技术人才的需求旺盛,反映出行业技术迭代加速 [1] - 端到端自动驾驶算法主要分为一段式和两段式两大技术范式,其中UniAD是一段式的代表性工作 [1] - 基于VLA的端到端算法是当前学术和工业界的热点,相关论文呈爆发式增长并正推动量产落地 [1] 端到端与VLA技术栈 - 核心技术涉及BEV感知、视觉语言模型、扩散模型、强化学习、世界模型等多个前沿领域 [3] - 一段式端到端算法可进一步细分为基于感知、扩散模型、世界模型及VLA等多种实现路径 [1] - 从模块化算法演进至端到端,再发展到VLA,代表了自动驾驶技术发展的主要方向 [3] 自动驾驶VLA与大模型实战课程 - 课程由学术界专家主导,系统梳理从VLM作为解释器到模块化VLA、一体化VLA及推理增强VLA的技术体系 [3] - 课程内容涵盖Vision/Language/Action三大模块,并设有大作业指导学员从零搭建VLA模型及数据集 [3] - 授课教师来自清华大学及QS30高校,在ICCV/IROS/EMNLP等顶级会议发表多篇论文,GitHub项目总Star数超过2k [8][11] 端到端与VLA自动驾驶课程 - 课程由工业界专家主导,重点讲解一段式/两段式端到端算法的核心理论与模型 [12] - 课程设计包括基于扩散模型的Diffusion Planner和基于VLA的ORION算法两大实战项目 [12] - 授课教师为国内顶级主机厂算法专家,拥有端到端及大模型算法的预研和量产交付经验 [14] 课程目标人群要求 - 学员需自备GPU,推荐算力为4090及以上 [15] - 要求学员具备一定的自动驾驶领域基础,并熟悉Transformer、强化学习、BEV感知等基本概念 [16] - 学员需拥有概率论、线性代数基础,并掌握Python和PyTorch编程能力 [16]
端到端和VLA占据自动驾驶前沿方向的主流了。。。
自动驾驶之心· 2025-10-13 12:00
端到端自动驾驶算法技术趋势 - 端到端自动驾驶已成为量产核心算法 技术栈丰富 主要分为一段式和两段式两大范式 [1] - 一段式代表性算法为UniAD 直接从传感器输入建模自车轨迹输出 二段式基于感知结果进一步输出自车和他车轨迹 [1] - 一段式算法衍生出多个子领域 包括基于感知 扩散模型 世界模型及VLA的端到端算法 其中VLA相关论文呈现爆发式增长 工业界加速量产布局 [1] 自动驾驶技术课程内容架构 - 行业推出《端到端与VLA自动驾驶小班课》和《自动驾驶VLA和大模型实战课程》 由工业界与学术界专家联合授课 聚焦前沿技术方向 [3] - VLA实战课程涵盖三大领域:从VLM作为自动驾驶解释器 到模块化VLA 一体化VLA 以及主流推理增强VLA 配套理论基础与实战大作业 [3] - 端到端课程重点讲解一段式/两段式算法 涵盖BEV感知 大语言模型 扩散模型和强化学习 设置Diffusion Planner和ORION算法两大实战项目 [10] 课程师资与学员要求 - 师资团队包括清华大学硕士生及QS30高校博士 在ICCV/IROS/EMNLP等顶级会议发表多篇论文 具备多模态感知 VLA算法研发及量产交付经验 [7][9][10] - 学员需自备GPU 推荐算力在4090及以上 需具备自动驾驶基础 Transformer大模型 BEV感知等技术概念 以及概率论 线性代数和Python/PyTorch编程能力 [13]
工业界和学术界大佬带队!彻底搞定端到端与VLA
自动驾驶之心· 2025-10-10 07:32
端到端自动驾驶算法趋势 - 端到端算法已成为自动驾驶量产的核心算法,技术栈丰富,业内主要存在一段式和两段式两大类范式 [1] - 一段式范式以UniAD为代表,直接从传感器输入建模自车轨迹输出,二段式则基于感知结果进一步输出自车和他车轨迹 [1] - 一段式端到端算法可进一步细分为基于感知、扩散模型、世界模型及视觉语言模型(VLA)等多种子领域,尤其基于VLA的算法相关论文正爆发式发表,工业界也在争先量产 [1] 核心技术与课程定位 - 从模块化算法到端到端再到VLA,核心算法涉及BEV感知、视觉语言模型、扩散模型、强化学习、世界模型等,掌握这些技术可把握学术界和工业界最前沿方向 [3] - 行业推出《端到端与VLA自动驾驶小班课》与《自动驾驶VLA和大模型实战课程》,旨在帮助从业者快速高效入门 [3] - 《自动驾驶VLA与大模型实战课程》由学术界专家带队,聚焦VLA领域,涵盖从VLM作为自动驾驶解释器到模块化VLA、一体化VLA及推理增强VLA的三大领域 [3] - 课程配套理论基础梳理与大作业章节,指导学员从零搭建自己的VLA模型及数据集 [3] - 《端到端与VLA自动驾驶课程》由工业界专家带队,聚焦端到端自动驾驶宏观领域,梳理一段式/两段式重点算法,详解BEV感知、大语言模型、扩散模型和强化学习 [10] - 工业界课程设计两大实战项目:基于扩散模型的Diffusion Planner和基于VLA的ORION算法 [10] 师资力量与学员要求 - 课程讲师团队包括来自清华大学等顶尖院校的研究人员,在ICCV、IROS、EMNLP等顶级会议发表多篇论文,研究方向涵盖多模态感知、自动驾驶VLA、大模型Agent等前沿领域 [7][9] - 讲师团队具备丰富的自动驾驶、大模型研发和实战经验,并主持完成多项算法预研、框架工具及产品量产交付 [7][9][10] - 课程面向具备一定自动驾驶领域基础、熟悉Transformer大模型、强化学习、BEV感知等基本概念的学员,要求自备算力在4090及以上的GPU,并具备Python和PyTorch语言基础 [13]
作为研究,VLA至少提供了一种摆脱无尽corner case的可能性!
自动驾驶之心· 2025-09-15 11:56
VLA技术演进 - VLA成为自动驾驶主流关键词 新势力企业下半年集中抢占VLA技术高地[1] - 传统模块化架构存在错误累积效应和信息损失问题 依赖人工规则难以应对复杂交通场景[4] - 纯视觉端到端方案存在黑箱问题和因果混淆缺陷 泛化能力受限于训练数据覆盖范围[4][5] - VLA范式通过语言中间表征连接感知与行动 赋予模型推理解释和交互能力[5] - VLA模型利用LLM预训练的世界知识理解交通场景 实现更符合逻辑的决策[5] 学术研究课程 - 课程提供12周在线小组科研加2周论文指导和10周论文维护期[7][14] - 覆盖语言模型解释器 模块化VLA模型 统一端到端VLA模型 推理增强VLA模型四大研究方向[7] - 学员将获得经典论文与前沿论文分析能力 掌握创新点baseline和数据集使用方法[12] - 课程提供baseline代码和可用数据集 包括nuScenes Waymo Argoverse等自动驾驶数据集[23] - 配备2+1多师制教学团队 包括主导师副导师和科研论文班主任[23] 技术资源支持 - 提供基于模仿学习的端到端自动驾驶开源代码库包括VAD和UniAD项目[24] - 提供基于扩散模型的端到端自动驾驶项目DiffusionDrive和OccNet[24] - 开放VLA端到端自动驾驶项目OpenDriveVLA SimLingo和Senna[24] - 课程必读论文包括Senna SimLingo OpenDriveVLA和ORION等最新研究成果[25] - 硬件要求最低配置为4张4090显卡 推荐配置为8张4090显卡或更高性能设备[20] 课程体系设计 - 14周课程包含传统端到端自动驾驶介绍 VLA架构详解和模块化模型研究[26][27] - 每周安排1-1.5小时课程 包含课题概览 选题讨论 算法详解和论文写作方法论[26] - 学员需具备深度学习基础 熟悉Python和PyTorch 最好掌握Linux开发环境[16][20] - 课程要求每周课前阅读资料并完成作业 课后自学时间至少1-2小时[20] - 最终产出包括论文初稿 项目结业证书和优秀学员推荐信[23]
即将开课!端到端与VLA自动驾驶小班课来啦(扩散模型/VLA等)
自动驾驶之心· 2025-08-11 07:32
端到端自动驾驶技术发展 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向,自UniAD获得CVPR Best Paper后引发国内智驾军备竞赛 [2] - 2024年理想汽车宣布E2E+VLM双系统架构量产,技术通过传感器数据直接输出规划或控制信息,避免模块化方法误差累积 [2] - BEV感知打破模块化壁垒,UniAD统一感知和规划任务,推动端到端技术进入新阶段 [2] - 当前技术需掌握多模态大模型、BEV感知、强化学习、视觉Transformer、扩散模型等跨领域知识 [3] 技术课程核心内容 - 课程涵盖二段式端到端(PLUTO)、一段式端到端(UniAD)、基于世界模型(OccWorld)、基于扩散模型(DiffusionDrive)及VLA方向 [7] - 第一章解析端到端发展历史及模块化到端到端的演变,对比一段式、二段式、VLA范式优缺点 [9] - 第二章重点讲解背景知识,包括VLA涉及的大语言模型、扩散模型、强化学习及BEV感知 [9][12] - 第三章聚焦二段式端到端,分析PLUTO、CarPlanner、Plan-R1等经典与前沿工作 [10] - 第四章深入一段式端到端与VLA,覆盖UniAD、OccWorld、DiffusionDrive及ORION等实战案例 [11] 课程特色与目标 - 采用Just-in-Time Learning理念,帮助学员快速掌握核心技术栈并构建领域框架 [4][5] - 结合实战环节完成理论到实践闭环,包括RLHF微调及VLA算法复现 [6][13] - 学员需具备自动驾驶基础、Transformer/BEV感知等知识,课程目标为达到1年算法工程师水平 [18] - 课程进度安排为3个月,分章节解锁内容并配备VIP群答疑 [18] 行业趋势与就业需求 - 端到端自动驾驶成为智能驾驶代表方向,学术界与工业界加速布局VLA等前沿技术 [2][11] - VLA技术因上限高、难度大成为招聘热点,涉及VLM、BEV、扩散模型等多技术融合 [11] - 扩散模型在多模轨迹预测中应用广泛,DiffusionDrive等作品推动工业界落地尝试 [11][12]
筹备了半年!端到端与VLA自动驾驶小班课来啦(一段式/两段式/扩散模型/VLA等)
自动驾驶之心· 2025-07-09 20:02
端到端自动驾驶技术发展 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向,通过传感器数据直接输出规划或控制信息,避免模块化方法的误差累积 [1] - BEV感知打通模块化壁垒,UniAD统一感知和规划任务,标志着端到端时代的来临 [1] - 2024年理想汽车宣布E2E+VLM双系统架构量产,显示工业界对端到端技术的重视 [1] - 技术方向多样化:PLUTO(二段式)、UniAD(感知一段式)、OccWorld(世界模型一段式)、DiffusionDrive(扩散模型一段式)等算法涌现 [4] 技术挑战与学习痛点 - 端到端技术涉及多模态大模型、BEV感知、强化学习、视觉Transformer、扩散模型等多领域知识,学习路径复杂 [3] - 论文数量繁多且知识碎片化,缺乏高质量文档和系统实战指导,入门难度高 [3] - 目标驱动导航需闭环任务支持,但理论与实践衔接困难 [3] 课程核心内容与特点 - 课程覆盖端到端算法发展历史、技术范式(一段式、二段式、VLA)及工业界应用 [8][10] - 重点讲解背景知识:Transformer、BEV感知、扩散模型、VLM强化学习技术(RLHF、GRPO) [8] - 二段式端到端聚焦PLUTO、CarPlanner、Plan-R1等经典与前沿工作 [9] - 一段式端到端涵盖UniAD、OccWorld、DiffusionDrive、VLA等子领域,配套Diffusion Planner和ORION实战 [10][12][13] - 大作业为RLHF微调实战,可迁移至VLA算法 [14] 课程结构与安排 - 分五章展开:端到端概述、背景知识、二段式、一段式与VLA、RLHF大作业 [8][9][10][14] - 8月15日开课,三个月结课,离线视频+VIP群答疑+三次线上答疑 [20] - 章节解锁时间:第一章(8.01)、第二章(8.15)、第三章(8.30)、第四章(9.15)、第五章(10.30) [20] 目标人群与学习收获 - 需具备GPU(推荐4090+)、自动驾驶基础、Transformer/BEV/强化学习概念、Python/PyTorch能力 [22] - 学完可达1年经验算法工程师水平,掌握端到端框架及BEV、扩散模型、VLA等关键技术 [23] - 可复现主流算法,应用于实习、校招、社招场景 [23]