Workflow
沙箱系统
icon
搜索文档
Agent 正在终结云计算“流水线”,Infra 必须学会“思考” | 专访无问芯穹夏立雪
AI前线· 2025-12-02 12:28
基础设施范式转变 - 基础设施演进正从AI Infra走向Agent Infra乃至Agentic Infra,成为推动智能体规模化落地的关键力量[2] - 范式从“处理”转变为“思考”,基础设施需从“生产线工厂”转变为“解决方案公司”,为Agent的整体产出质量提供系统性支撑[3] - 基础设施需具备智能性,能够保障Agent执行任务的质量,协调连续且相互关联的多任务协作[3][4] Agent Infra 核心升级维度 - 运行环境需灵活适配Agent的执行方式,环境的沙盒化与灵活调度能力尤为关键[4] - 为Agent配备完善的工具,使其能够有效调用资源[4] - 提供精准而充分的上下文信息,确保任务理解与执行的一致性[4] - 通过安全与监控机制,保障整个任务过程的可控性与可观测性[4] Agentic Infra 的演进与目标 - Agent Infra是第一阶段,旨在让算法能力被更好地发挥,推动智能体走出实验室环境,帮助Agent从演示品走向生产力[9] - Agentic Infra是第二阶段,重点构建能更好支持下一代AI进化与规模化落地的基础设施,推动智能体深度参与基础设施的核心工作流[10] - 目标是实现从“将智能体视为工具”到“将智能体视为协作者”的范式转变,构建支撑智能体高效、稳定、低成本协作与进化的基础设施新形态[10] 当前Agent发展的核心问题与瓶颈 - 模型能力已经相当出色,但配套给Agent的基础设施服务与工具尚不成熟,瓶颈不在模型本身,而在支撑体系的响应能力[5][6] - 用户对“无代码编程”的期待是“用自然语言一步到位生成完整程序”,但现实仍需频繁迭代和更专业知识,高门槛和不确定性导致用户流失[5] - Lovable平台的用户数从6月的峰值3512万跌至9月的不足2000万,下降了超过40%[5] 算力资源优化与调度创新 - 传统AI算力基础设施以固定虚拟化或容器化单元划分资源,在Agent场景下极不经济,造成资源浪费[15] - 良好Agent Infra通过微虚拟化沙箱、沙箱调度和高并发沙箱管理机制,实现毫秒级环境切换和接近100%的资源利用[16] - 容器冷启动过程通常耗时数秒到数十秒,在高频创建和销毁任务的Agent场景中会造成大量时间损耗与资源空转[15] 异构算力统一调度与生态整合 - 核心技术创新是实现资源的统一标准化,包括功能层面打通不同类型算力的使用和效率层面实现任务的合理分配[16] - 国内算力资源种类多样、分布分散,基础设施必须始终面向最前沿,让Agent像使用水电一样使用算力[7][17] - 技术适配是早期最大阻力,一旦把不同模型与不同硬件之间的M × N映射打通,后续维护成本不高[17] 技术先进性与工程落地的协同 - 构建AI原生的基础设施,技术先进性与应用落地性相辅相成、互相迭代[19] - 研发支持弹性伸缩和动态资源调度的沙箱系统,每个Agent的沙箱可以按需启动或销毁,实现毫秒级响应[20] - 资源分配可根据任务类型和负载自动调整,通过智能调度引擎实现高峰弹性扩容、低峰快速收回,显著提升集群资源利用率[20] 未来基础设施形态与发展愿景 - 未来希望看到智能体之间进一步形成组织,共同完成更复杂的任务,各个智能体的KV Cache和上下文可以根据需求实现共享或隔离[14] - 目标是释放无穹算力,让AGI触手可及,通过系统层面的创新,让AGI能够更高效、更可持续地实现[22] - 基础设施引入Agent能力后具备自主性,从而实现更高效的资源整合和更具价值的功能创新[13]