自动驾驶之心的1v6论文辅导课程

搜索文档
传统的感知被嫌弃,VLA逐渐成为新秀...
自动驾驶之心· 2025-09-11 07:33
自动驾驶技术演进 - 自动驾驶技术从传统模块化架构向端到端VLA模型演进 解决错误累积和信息损失问题[2] - 传统模块化架构存在错误累积效应 上游模块微小误差会逐级传递放大[2] - 纯视觉端到端模型存在黑箱问题和因果混淆 可能学到虚假关联而非真正因果关系[2] - VLA模型通过引入语言作为中间表征 赋予模型推理解释和交互能力[2][3] - VLA模型可利用LLM预训练的世界知识 理解复杂交通场景并做出符合逻辑决策[3] VLA技术优势 - VLA模型提升可解释性与可信赖性 能用自然语言解释决策依据[3] - VLA模型增强泛化与处理长尾场景能力 通过语言抽象和推理能力泛化到未见场景[3] - VLA实现自然人机交互 用户可通过自然语言向车辆下达高级指令[3] - VLA范式打造感知认知决策一体化智能体 不仅是会开车更能理解世界与人沟通的AI驾驶员[3] 论文辅导课程内容 - 课程系统讲解VLA自动驾驶重点理论知识 帮助形成清晰知识体系[4] - 课程将模型理论与代码实践结合 协助开发设计新模型[4] - 课程提供论文写作方法论和投稿建议 解决文章不会写不会投问题[4] - 课程时长12周在线小组科研加2周论文指导和10周论文维护期[5][12] - 课程提供经典论文前沿论文和代码实现 包括创新点baseline数据集[5][10] 课程收获 - 学员可获得对典型论文分析方法 理解重点算法与原理清晰不同算法优劣势[5][12] - 导师为每位学员提供研究idea 即使自己没想到合适idea也能进行后续研究[5][12] - 学员coding能力增强 在老师准备baseline代码和数据集上高效展开研究[5][12] - 学员获得论文写作自查修改方法论 以及投稿建议[5][13] - 学员可能产出一篇论文初稿 通过完全投入课程学习与实践[13] 课程大纲 - 课程覆盖传统端到端自动驾驶 VLA端到端自动驾驶模块化VLA模型等内容[6][8][19] - 具体包括传统端到端介绍 VLA端到端介绍 模块化VLA模型 统一端到端VLA模型等[6][8][24] - 课程包含论文写作方法论和课题汇报与投稿意见[8][25] - 每周课时1-1.5小时 共14周课程[24][25] - 课程采用2+1式师资 主导师由名校教授行业导师担任 副导师由博士硕士担任[21] 招生要求 - 学员需具备深度学习基础 对自动驾驶算法有简单了解[14] - 学员需熟悉掌握python语法和PyTorch使用[14] - 学员需完成在线1v1面试[14] - 硬件要求最好具备8张4090显卡或以上设备 最低不少于4张4090显卡[17] - 学习要求每周上课前阅读资料完成作业 课上积极参与讨论 应该全勤[17] 服务支持 - 课程提供公开数据集 如nuScenes Waymo Argoverse等自动驾驶数据集[21] - 课程提供baseline代码 包括基于模仿学习扩散模型和VLA的端到端自动驾驶代码[22] - 课程提供必读论文 包括A Survey on Vision-Language-Action Models等5篇核心论文[23] - 上课平台为腾讯会议直播加小鹅通回放[26] - 答疑周期为6个月 授课周期为3.5-4个月[27]