Claude Code/Codex

搜索文档
Karpathy氛围编程最新指南,三层AI编程结构:顺境Cursor,逆境Claude,绝境GPT-5 Pro
36氪· 2025-08-26 09:31
AI编程工具分层结构 - 提出三层AI编程结构:第一层Cursor负责自动补全与小范围代码修改(75%使用频率)[3][9],第二层Claude/Codex用于较大功能块实现与快速原型开发[5][8],第三层GPT-5 Pro解决最棘手bug与复杂抽象问题[4][5] - 工具选择策略基于任务复杂度:简单局部任务用Cursor,中等功能用Claude/Codex,极端难题用GPT-5 Pro[4][13] - 结构源自实战经验,强调工具按频率和任务类型组织[4] 高带宽沟通与实施方法 - 通过代码片段或注释直接展示任务意图,实现高效信息传递[7] - 对具体代码高亮后请求修改,避免纯文字描述的低效性[7] - 在大型项目中需将相关内容塞入上下文,小型项目则直接包含所有文件[16] 工具优势与适用场景 - 在陌生领域(如Rust、SQL)不可或缺,能快速生成一次性可视化或调试代码[11] - 节省重复劳动,支持快速原型开发和跨领域代码尝试[5][11] - GPT-5 Pro能挖掘深奥文档论文,处理文献综述和抽象结构清理[13] 当前局限性及改进需求 - 模型易跑偏,需常按ESC终止,避免全面托管模式[12] - 代码质量存在问题:滥用try/catch、抽象过度复杂、代码膨胀(如嵌套if-else替代列表推导)、重复代码而非使用辅助函数[12] - 需手动清理编码风格问题,缺乏The Zen of Python美感[12] - 交互性局限:模型倾向于写代码而非解释原因[12] 开发者实践与社区反馈 - 网友验证分层有效性:小问题靠AI补全,大问题靠多模型尝试并人工监督[15] - 模型切换成为艺术,不同模型针对特定任务效果差异显著[17] - 确保代码一致性需提供详细需求说明、功能拆解及验收标准(含代码风格规范)[19] - 开发流程建议:求思路优缺点分析→写第一版代码→复查API文档→测试→提交→迭代循环[16] 行业影响与概念演进 - 提出"代码后稀缺时代"概念,代码可随意创造删除[12] - Vibe Coding指南从1.0持续迭代,避免沦为概念游戏[13] - 工具可能性拓展引发开发者焦虑,需通过社区交流推动集体进步[13][14]