Workflow
DPO
icon
搜索文档
对VLA的RL最新进展的梳理~
自动驾驶之心· 2025-07-03 20:41
2025年VLA领域RL算法发展综述 核心观点 - VLA领域RL算法在2025年5月迎来技术爆发,传统算法(PPO、GRPO、DPO)被迁移至VLA场景,并涌现大量针对性创新技巧 [1] - 主流技术路线为双阶段训练范式(监督预训练+在线RL微调),结合稠密奖励设计、工程优化等提升性能 [25][26] 算法创新与实验 iRe-VLA - 采用PPO算法,提出双阶段训练:监督学习预训练→冻结VLM backbone进行在线RL→混合数据迭代优化 [2][3] - 实验环境覆盖Meatworld仿真、Franka Kitchen及真实机械臂任务,消融实验显示解冻VLM backbone可提升效果 [5] GRAPE - 引入DPO偏好对齐机制,轨迹级奖励设计包含三部分:成功奖励(1/0)、自我奖励(轨迹生成概率对数)、外部奖励(VLM+GPT-4o生成的动态cost函数) [6][8][9] - 在Simpler-Env和LIBERO环境中超越SFT及传统DPO基线 [10] LOOP/RIPT-VLA - 结合RLOO(留一法优势估计)与PPO,解决稀疏奖励+长序列+多任务不平衡场景的Critic训练难题 [13][14] - 动态拒绝机制跳过无效梯度更新,多任务群体采样缓解数据不平衡 [15] RL4VLA - 将VLA动作生成建模为多模态对话过程,设计Robotic Process Reward Model提供稠密伪奖励 [19][20] - 关键工程优化:GPU负载均衡矢量化环境、分布式训练框架(PyTorch FSDP)、bfloat16精度加速 [25][26] 技术趋势与挑战 - PPO仍是当前VLA-RL最优算法,但需探索新算法适配VLA特性(如LOOP) [17][30] - 稀疏奖励问题通过子任务分解、关键帧伪奖励、课程学习等策略缓解 [22][23][30] - 工程瓶颈包括采样效率低、显存开销大、非自回归结构适配等 [30]
大模型强化学习,相比PPO,DPO 还是个弟弟?
自动驾驶之心· 2025-06-22 22:09
DPO与PPO的对比研究 - 论文指出当前开源榜单上DPO占据领先位置,但顶级闭源模型如GPT4和Claude仍采用PPO方案,引发对两者实际优势的探讨[1] - DPO存在与PPO类似的reward hacking问题,即可能产生不符合人类偏好但能获得高奖励的解决方案[2] - 理论分析表明PPO导出的策略是DPO导出策略的真子集,DPO可能产生偏离参考策略的解[3] - 实验数据显示在编程比赛等硬核任务上PPO显著优于DPO,如Code Llama 34B模型在APPS测试集上PPO达到44.4%通过率,而DPO-Iter为34.2%[11] DPO的缺陷分析 - DPO在偏好数据集未覆盖的数据点上可能分配过高概率,导致无法预期的行为[6] - 表格数据显示DPO在安全相关指标上表现较差,如Helpfulness为-4.19,Harmfulness为-0.97,Safety Rate仅55.4%[7] - 通过SafeSFT、迭代DPO和数据过滤等方法可提升DPO性能,但仍无法超越PPO[8] PPO性能提升关键因素 - 采用优势函数规范化、大Batch训练和参考模型滑动更新三项技术可显著提升PPO性能[9] - 实验显示当batchsize太小时PPO性能甚至差于SFT[9] - 在编程任务中PPO刷新了SoTA,如Code Llama 34B模型在测试集上达到22.4%通过率,显著高于DPO的0%和DPO-Iter的3.2%[12] 编程任务实验结果 - 在APPS测试集上,Code Llama 34B模型PPO方法在Intro、Inter和Comp三个难度级别分别达到44.4%、18.0%和9.1%通过率[11] - PPO在编程任务中直接利用测试用例结果作为奖励信号,无需人工标注或训练奖励模型[13] - 对比实验显示DPO训练失败产生无意义结果,而PPO刷新了该领域的最高水平[13]