MMaDA

搜索文档
冲击自回归,扩散模型正在改写下一代通用模型范式
机器之心· 2025-06-04 09:59
Google I/O 2025开发者大会与Gemini Diffusion - Google DeepMind推出采用扩散技术的语言模型Gemini Diffusion,提供更强控制力、创造力和文本生成速度[1] - Gemini Diffusion生成速度达到最快模型的五倍,采样速度高达每秒1479 token[2][8] - 该模型在多项基准测试中表现优异,如HumanEval(89.6%)、MBPP(76.0%)等,性能媲美更大规模的自回归模型[9] 扩散语言模型(dLLM)发展历程 - 早期探索包括斯坦福Diffusion-LM(2022)、上海AI实验室DiffuSeq(2022)和复旦大学DiffusionBERT(2022)[3] - 蚂蚁集团与人大团队推出首个8B参数扩散大模型LLaDA,性能比肩LLaMA3[4] - LLaDA成为dLLM研究基础模型,衍生出d1、LaViDa等后续模型[4][20] LLaDA模型技术特点 - 采用掩码扩散机制,通过前向加噪和反向去噪过程建模[14] - 预训练使用2.3T tokens,在MMLU(65.4%)、BBH(57.6%)等基准表现优异[19] - 1.5版本引入VRPO方法,在GSM8K(+4.7)、Math(+0.4)等任务取得进步[21][22] 扩散多模态LLM(dMLLM)进展 - 蚂蚁集团与人大推出LLaDA-V,集成视觉指令微调与掩码扩散机制[24] - 字节跳动开发MMaDA,兼具文本推理、多模态理解和文生图能力[31] - dMLLM正向蛋白质序列生成等更多模态扩展[33] 行业竞争格局 - 国内研究团队(蚂蚁、字节、人大等)在dLLM/dMLLM领域已跻身第一梯队[11] - 国际竞争者包括Google(Gemini Diffusion)、Meta(d1模型)等[6][8] - 初创公司Inception Labs推出商业级扩散模型Mercury[6] 技术发展趋势 - 扩散模型正从视觉生成扩展到语言理解和多模态交互[35] - 研究热点包括模型加速(Fast-dLLM)、推理增强(LLaDOU)等方向[6] - 量子计算与扩散模型结合(qdLLM)等创新方向正在探索[35]
比Gemini Diffusion更全能!首个多模态扩散大语言模型MMaDA发布,同时实现强推理与高可控性
机器之心· 2025-05-22 16:46
近年来,大型语言模型(LLM)在多模态任务中展现出强大潜力,但现有模型在架构统一性与后训练(Post-Training)方法上仍面临显著挑战。 传统多模态大模型多基于自回归(Autoregressive)架构,其文本与图像生成过程的分离导致跨模态协同效率低下,且在后训练阶段难以有效优化复杂推理 任务。 DeepMind 近期推出的 Gemini Diffusion 首次将扩散模型(Diffusion Model)作为文本建模基座,在通用推理与生成任务中取得突破性表现,验证了扩 散模型在文本建模领域的潜力。 在此背景下,普林斯顿大学与字节 Seed、北大、清华等研究团队合作提出了 MMaDA(Multimodal Large Diffusion Language Models), 作为首个系 统性探索扩散架构的多模态基础模型,MMaDA 通过三项核心技术突破,成功实现了文本推理、多模态理解与图像生成的统一建模。 | Task 1: Textual Reasoning | Answers from Other Models | Answer from MMaDA | | --- | --- | --- | | | ...