NVIDIA H100 GPU芯片

搜索文档
重磅!AlexNet源代码已开源
半导体芯闻· 2025-03-24 18:20
AlexNet的发布与意义 - 计算机历史博物馆(CHM)与Google合作发布了AlexNet的源代码 该神经网络是2012年开启当今AI浪潮的关键技术 [1] - AlexNet由多伦多大学团队(Alex Krizhevsky、Ilya Sutskever和Geoffrey Hinton)开发 主要用于图像识别 [2][15] - 其2012年论文被引用超过172,000次 标志着计算机视觉领域从传统算法转向神经网络的转折点 [16][17] 深度学习的发展历程 - Geoffrey Hinton团队在1986年重新发现反向传播算法 成为现代深度学习的基础 [5] - 20世纪80年代神经网络以"联结主义"名称复兴 Yann LeCun证明卷积神经网络在手写识别中的优势 [5][6] - 2000年代后期GPU加速的神经网络训练取得突破 语音识别率先验证技术可行性 [13] 关键基础设施突破 - ImageNet项目(2009年完成)提供比传统数据集大几个数量级的训练样本 但前两年算法进步有限 [8][9] - NVIDIA的CUDA系统(2007年)使GPU能用于通用计算 黄仁勋推动的H100芯片现支撑ChatGPT等AI训练 [9][12] - AlexNet首次将深度神经网络、大数据集和GPU计算结合 训练在家庭电脑搭载的两块NVIDIA显卡上完成 [13][15] 技术实现细节 - Alex Krizhevsky开发"cuda-convnet"代码库 通过多GPU支持实现ImageNet训练性能突破 [15] - 原始代码经过5年协商才获谷歌授权发布 2012版源代码现可在CHM的GitHub获取 [18] - 技术路线从专用图像识别扩展至语音合成、围棋、自然语言处理等领域 最终催生ChatGPT [17]