Stable Diffusion 3
搜索文档
直观理解Flow Matching生成式算法
自动驾驶之心· 2025-12-17 08:03
算法核心原理 - Flow Matching是一种生成式模型,旨在学习一个从随机噪声数据到目标数据分布的映射,其核心思想是学习一个速度场(或方向场),指导数据点从初始噪声状态向目标状态移动 [3][4][5] - 与直接学习端到端映射不同,Flow Matching通过构造从源点(噪声)到目标点的连线,并在连线上采样中间点,让模型学习这些中间点应该朝目标点移动的方向(即速度场),训练时,同一个中间点可能受到多条连线影响,其学习到的方向是多个目标方向的均值 [16][17] - 在推理(生成)阶段,模型从一个随机噪声点出发,依据学习到的速度场逐步移动,随着移动过程,状态的可能性会逐渐“坍缩”到目标分布中的某个特定样本附近,从而生成高质量结果,这避免了直接映射可能导致的输出为多个目标状态均值的问题 [7][17] 算法优势与对比 - 相比自回归生成模型(逐个像素/元素生成),Flow Matching在一次前向传播中生成整个样本,效率更高,避免了自回归模型需要多次调用模型的低效问题 [10] - 相比扩散模型(Diffusion Model),Flow Matching被视为一种更直接高效的替代方案,它通过学习确定性的移动方向来生成数据,而非多步迭代去噪,因此在Stable Diffusion 3、Meta MovieGen等先进模型中已开始应用 [12] - 该算法通过逐步“坍缩”状态来确保生成质量,在推理初期,移动方向可能是多个可能性的平均,但随着过程推进,方向会越来越确定,最终收敛到目标分布中的一点 [11][17] 算法实现与代码 - 基础实现包含几个关键步骤:为每个目标样本生成一个随机噪声源点;在源点与目标点连线上进行线性插值,采样得到中间点;用一个神经网络预测这些中间点的速度场;使用源点到目标点的真实方向向量作为监督信号进行训练 [18] - 代码示例以生成二维正弦曲线上的点为例,定义了向量场预测网络,在训练循环中计算预测速度场与目标速度场(`x1 - x0`)之间的均方误差损失,并通过数值求解常微分方程(ODE)的方式从噪声点出发生成最终样本 [19][20][21] - 算法可扩展为条件生成模型,通过简单修改网络结构,在输入中融入提示词(如标签、文本等)信息,即可控制生成样本的特定属性,例如控制生成正弦曲线上特定区间的点 [24][26][29] 高级应用实例 - 在手写数字生成(MNIST)任务中,采用了条件UNet作为预测速度场的骨干网络,因其具有多尺度特征融合能力,适合图像类生成任务 [32][33] - 在推理阶段,采用了自适应步长的ODE求解器(如`dopri5`方法),替代固定的欧拉法步进,可以在相同的迭代步数下获得更精细的生成结果,提升了生成效率和质量 [32][36] - 训练流程中,动态生成噪声样本和时间步长`t`,通过`xt = (1 - t) * noise + t * images`构造中间状态,并让模型预测从噪声到真实图像的向量场 [40]
直观理解Flow Matching生成式算法
自动驾驶之心· 2025-11-28 08:49
算法核心原理 - Flow Matching是一种生成式模型,旨在从随机输入生成与目标数据集相似的样本[3][4] - 与直接学习随机数据到目标数据的映射不同,该算法通过学习一个“行驶方向”或速度场,引导随机点逐步移动到目标分布区域[12][14] - 训练时在源点到目标点的连线上采样中间点,并学习其朝向目标点的移动方向,推理时从随机点出发,沿学习到的方向场移动,最终收敛到目标分布[16][17] 技术优势与比较 - 相比自回归模型逐像素生成效率低的问题,Flow Matching通过一次生成关联较小的区域来平衡效果与效率[9][10] - 相较于扩散模型的多步迭代降噪,Flow Matching提供了一种更直接高效的生成方案,已被Stable Diffusion 3、Meta MovieGen等应用[12] - 该算法能有效避免模型输出因可能性过多而退化为多种可能状态平均值的问题,生成质量更高[7][11] 代码实现与实战 - 基础实现包含生成随机源点、与目标点线性插值得到中间点、训练网络预测速度场并与真实方向计算损失等关键步骤[18][19] - 带提示词的生成模型可通过在预测网络中增加提示词输入实现,将生成过程约束到特定条件或区间[24][26] - 在MNIST手写数字生成任务中,采用UNet作为骨干网络以融合多尺度特征,并改用自适应步长ODE求解器以提升生成精度[32][34][36] 行业应用与前景 - 端到端自动驾驶算法工程师等岗位薪资范围达50-80K,显示市场对相关技术人才需求旺盛[50] - 行业课程涵盖从算法框架、强化学习应用到轨迹优化、模型部署等量产经验,旨在培养面向就业的实战能力[48][49] - 量产专家分享的导航信息编码、时空联合规划兜底等经验,直接关联算法在真实场景中的落地优化[47][49]
慕尼黑工业大学等基于SD3开发卫星图像生成方法,构建当前最大规模遥感数据集
36氪· 2025-06-30 15:47
卫星图像生成技术突破 - 德国慕尼黑工业大学和瑞士苏黎世大学团队提出结合地理气候提示与Stable Diffusion 3(SD3)生成卫星图像的新方法,并创建了最大遥感数据集EcoMapper [1][2] - EcoMapper数据集包含来自全球104,424个地点的290万张RGB卫星图像,覆盖15种土地覆盖类型及气候记录,空间覆盖面积达270万平方公里(占陆地面积2.05%)[5][7] - 该方法通过合成图像填补云层覆盖导致的观测空白,为全球气候适应和地理空间分析提供新工具 [2] 数据集与模型架构 - EcoMapper数据集按时间分批次采集,训练集含98,930个点位各24个月观测数据,测试集含5,494个点位96个月数据 [5][6] - 采用两种生成模型:微调后的SD3(支持1024x1024高分辨率)和专为遥感设计的DiffusionSat,后者通过元数据嵌入层增强时空属性编码 [8][9] - 多条件生成框架结合ControlNet技术,以历史卫星图像维持空间结构,气候提示反映环境变化,支持时间序列景观演变模拟 [10][12] 性能验证与行业应用 - SD3-FT-HR模型在文本到图像任务中FID最低(49.48),生成图像细节优于基线模型(SD3基线FID 157.36)[14][15] - 多条件生成模型FID进一步降至48.20,保持地理特征同时精准融合气候变化 [19][20] - 技术可应用于作物预测、土地利用监测及多云地区图像填补,推动气候变化可视化与情景探索 [22] 行业技术发展动态 - DiffusionSat为首个卫星图像专用扩散模型,支持多光谱输入和时间序列生成,由斯坦福团队开发并发表于ICLR 2024 [23] - MetaEarth模型通过自级联框架实现全球尺度无边界图像生成,北京航空航天大学团队成果 [24] - Earth Intelligence Engine结合物理模型生成洪水卫星图像,MIT等机构验证其物理一致性与泛化能力 [25][26]