WebThinker

搜索文档
「边思考、边搜索、边写作」WebThinker开启AI搜索&研究新纪元!
机器之心· 2025-05-15 16:40
研究背景 - 大型推理模型如OpenAI-o1和DeepSeek-R1在数学、编程等领域表现卓越,但在需要实时网络信息的复杂任务中存在局限性[6] - 现有开源深度搜索智能体采用RAG技术,但受限于预定义工作流程,难以深入探索网页信息[8] 技术框架 - WebThinker框架包含两种运行模式:问题解决模式和报告生成模式[13] - 问题解决模式赋予LRM深度网页探索功能,可自主发起网络搜索并提取信息[13] - 报告生成模式实现自主思考-搜索-写作策略,整合推理、搜索和报告撰写[13] - 框架采用强化学习训练策略,提升LRM调用研究工具的能力[15] 技术创新 - 突破传统RAG限制,实现端到端任务执行,无需遵循预设工作流程[10] - 深度网页探索器使LRM能自主搜索、导航并提取高质量信息[15] - 自主思考-搜索-写作策略配备三种专门工具:撰写、检查和编辑报告[15] 实验结果 - 在GPQA、GAIA、WebWalkerQA和HLE四个基准测试中表现优异[18][20] - WebThinker-32B-RL在GPQA科学问答中取得70.7%平均准确率,显著优于基准模型[21] - 在GAIA通用AI助手任务中达到48.5%准确率,优于其他方法[21] - 在Glaive研究报告生成任务中,完整性(8.4)和彻底性(8.2)评分领先[23] 应用前景 - 可应用于金融、科学、工程等知识密集型领域的研究工作[6] - 未来可扩展多模态深度搜索能力,处理图像、视频等信息[33] - 计划增强GUI网页探索能力,支持更复杂的交互任务[35]