Workflow
中心化控制
icon
搜索文档
AI将受困于人类数据
36氪· 2025-06-16 20:34
AI发展时代划分 - 当前处于从"人类数据时代"向"经验时代"转型的关键拐点 所有大型语言模型依赖互联网文本和人工标注等"二手经验"训练 但高质量人类数据已被快速消耗殆尽 新增语料的边际价值正急剧下降 [2][5][7] - 人类数据时代特征:AI系统训练基于人类生成的文本和图像 通过预测人类下一个词进行学习 而非预测世界 该策略已接近极限 [5][6] - 经验时代特征:智能体需通过与环境实时交互生成原生数据 数据源随智能体能力提升而指数级扩张 学习方式类似婴儿探索玩具或运动员赛场决策 [6][7][10] 技术实现路径 - 强化学习框架已验证可行性:AlphaGo通过模拟移动后果产生经验学习创造性策略 AlphaProof在国际数学奥林匹克竞赛中通过操作后果预测实现突破 [8][10] - 未来技术方向:智能体需建立自生奖励信号和世界模型 发展高保真环境下的长期记忆体系 通过高并行交互提升样本效率 [3][7][11] - 持续学习算法是关键瓶颈:当前AI尚无法实现完全从经验中学习 需开发更强算法支持智能体作为世界知识的可定制接口 [11] 社会治理哲学 - 去中心化合作优于中心化控制:多元目标并存的生态系统通过分布式激励保持创新活力 类比自然界不同生物拥有差异化目标的经济体系 [12][13][16] - 合作机制是核心优势:人类通过语言和金钱实现远超其他物种的合作规模 但需建立制度防范作弊者(如战争、欺诈)同时避免中心化权威僵化 [13][14][16] - AI治理警示:限制AI发展的呼吁与控制人类社会的历史论调高度相似 应警惕基于恐惧的单一目标束缚 保持多样化追求可降低单点失效风险 [15][16] 行业演进展望 - 合成数据成为新趋势:科技公司因人类数据边际效益递减而转向合成数据领域 [2] - 里程碑案例验证路径:从AlphaGo的模拟经验到AlphaProof的现实经验 显示大型语言模型正通过API接入等方式初步进入经验时代 [10] - 长期工程属性:实现超级智能需数十年持续投入 属于马拉松式发展而非短期突破 [10]
AI将受困于人类数据
腾讯研究院· 2025-06-16 17:26
AI发展拐点:从人类数据时代迈向经验时代 - 当前大型语言模型依赖互联网文本和人工标注等"二手经验"训练,但高质量人类数据已被快速消耗殆尽,新增语料的边际价值正急剧下降 [1][7] - 模型规模继续膨胀却收效递减的"规模壁垒"现象显现,大量科技公司开始转向合成数据 [1] - 智能体必须像婴儿学习玩具、足球运动员在赛场决策那样,通过与环境交互不断生成并利用第一手经验,而非单纯模仿人类旧有文本 [1][8] 经验时代的技术特征 - 智能体需要在真实或高保真模拟环境中持续运行,用环境回馈而非人类偏好作为原生奖励信号 [2] - 发展能够长期复用的世界模型与记忆体系,并通过高并行交互大幅提升样本效率 [2] - 强化学习范例(如AlphaGo、AlphaZero)已证明从模拟经验到现实经验的演进路径 [5][12] 去中心化合作的发展哲学 - "去中心化合作"优于"中心化控制",多元目标并存的生态系统通过分布式激励与竞争协作保持创新活力 [2][16] - 让智能体和人类都保持多样化追求,能降低单点失效与僵化风险,为未来AI治理提供更具韧性的框架 [2] - 人类最大的成功是合作(如经济、市场和政府),最大的失败是合作的失败(如战争、盗窃) [16][17] AI发展的三个阶段 - 模拟时代:AlphaGo、Atari等强化学习智能体从模拟经验中学习 [12] - 人类数据时代:ChatGPT和大型语言模型依赖人类生成的数据 [12] - 经验时代:智能体通过与世界互动的经验学习,AlphaProof是早期例证 [12] 智能体的核心能力构建 - 智能体需要像婴儿那样通过感知-行动循环凭第一人称经验自我学习 [5][8] - 知识必须关于经验而非文字,智能程度取决于预测和控制输入信号(特别是奖励信号)的能力 [10] - 强化学习框架让智能体成为能够做决定、实现目标、与世界互动的一流智能体 [10]