Workflow
以人为中心的数采技术
icon
搜索文档
“以人为中心”的具身数采逐渐成为首选,产业玩家格局初现~
具身智能之心· 2025-12-29 08:04
文章核心观点 - 当前机器人算法在真实场景中应用困难的核心原因是模型泛化能力不足,而泛化能力依赖于大规模高质量数据,因此如何低成本、规模化地获取高质量数据成为行业关键问题 [2] - 行业为解决数据问题已演变出四条主要技术路线,即在数据质量与获取成本间寻求平衡 [3] - 在多种方案中,“以人为中心”的数据采集技术路线,特别是基于UMI(通用操作接口)理念的便携式设备方案,因其在成本、规模和跨场景能力上的综合优势,正成为行业主流方向 [11][13] - 围绕“以人为中心”的数据范式,已初步形成产业玩家格局,多家公司推出了各具特色的便携式数据采集终端并布局规模化数据生产 [14][26] 行业现状与核心挑战 - 机器人算法研究活跃但真实场景应用少,模型泛化性不足是根本原因,场景稍变即性能下降 [2] - 高质量数据采集面临成本高、周期长、难以规模化、定制化属性高等挑战 [2] 主流数据获取方案 - 行业形成四种核心具身数据获取方案:UMI数据、遥控真机数据、仿真数据与人类视频数据 [3] - **UMI数据**:通过手持夹爪与腕部相机采集,实现不同机器人平台的数据互通与高效采集,为模型通用化训练提供基础 [4] - **遥控真机数据**:获取成本极高,但因真实环境不可替代、数据价值密度高(包含完整任务闭环)、是商业化落地必经之路,仍被视为核心数据类型 [5][12] - **仿真数据**:主流有纯仿真和real2sim2real方案,后者借助真实数据生成更逼真仿真数据,但存在真实性问题,真机泛化是挑战 [6] - **人类视频数据**:规模大、成本低、场景覆盖广,但无法直接取得很好泛化效果,适合预训练阶段 [7] 数据方案的关键评估维度 - **规模化**:高质量和不同场景的数据越多,真实场景效果越好 [8] - **跨本体**:能够跨本体使用的数据发挥空间更大,未来是本体形态百花齐放的时代 [9] - **成本**:低成本是保证规模化的必经之路 [10] “以人为中心”数据方案的优势 - **通用性强,打破平台壁垒**:通过标准化接口实现“无本体依赖”的数据采集,提升数据复用价值 [11] - **数据质量稳定,标注精度高**:内置标准化标注模块,采集过程同步完成精准标注,基于真实物理交互,真实性高 [11] - **采集效率高,成本可控**:实现自动化采集与传输,无需为不同平台单独开发系统,降低前期投入成本 [11] - **便携式设备**:允许在真实场景中连续记录人类完成复杂任务的过程,产生“连贯行为链”数据,并能直接采集海量多样化的人类操作数据 [13] 产业玩家格局与产品 - 行业内“以人为中心”相关玩家主要分为两类:拥有自家机器人本体+数据采集终端产品的公司,以及更聚焦数据领域、提供多模态数采终端和一站式数据服务的公司 [14] - 具身智能领域正出现类似智驾行业的生态圈,智驾领域公司(如Momenta、地平线)近1年来有多位高管和技术核心人员参与创业 [15] - **鹿明机器人**:发布FastUMI Pro多模态无本体数据采集软硬件系统,采用轻量化手持式夹爪方案,整体重量仅600g,负载能力达2kg,并已搭建3个数采厂提供数据服务 [16] - **简智**:发布Gen DAS数据采集设备,轻量化、无线化、便携化,其具身智能数据产线通过走进数千个家庭模式批量制造高质量数据 [18][20] - **它石智航**:发布轻便、模态齐全、可穿戴的具身数据采集系统SenseHub,将视觉、触觉与手部动作数据深度融合,持续记录真实高质量操作行为 [21] - **数元时代**:推出MeData Link系列多模态数据采集终端产品,包括手持式夹爪数采终端,无需定位基站、无线、轻量便携,搭建了规模化真实场景数据采集产线,目标实现日产千小时以上高质量数据,并同步搭建超8000平方米的数采厂 [23][25] 行业发展趋势与竞争关键 - 当前具身智能领域现状是重数据和本体,在本体质量提升的同时,谁掌握更多数据,谁就拥有更多市场话语权 [26] - 对于具身公司而言,能够低成本构建丰富的数据库至关重要 [26]