仿真测试闭环
搜索文档
2025年几家自动驾驶公司的采访总结
自动驾驶之心· 2026-01-22 17:07
核心观点 - 自动驾驶行业在核心算法层面已形成共识,即采用端到端(End-to-End)作为基础架构,并引入世界模型(World Model)作为关键基础设施 [6][7][10] - 行业在顶层认知上出现路线分歧,主要围绕是否在端到端模型中引入语言模型(即VLA与WA/反VLA之争),这本质上是计算效率与推理能力(快思考 vs 慢思考)的不同权衡 [7][11] - 未来三年是现有深度学习范式的“极致优化期”,核心在于通过海量数据驱动能力自然生长,而非理论重构 [7] - 行业竞争已超越单纯算法模型之争,研发基建、数据仿真、算力芯片、工程化能力及用户体验等非技术因素成为决定成败的关键变量 [13] 核心技术路线 端到端 (End-to-End) - 是自动驾驶的底层基座,替代了传统的模块化方案,直接从传感器输入映射到控制输出 [1][10] - 一段式端到端(One-Stage E2E)已被验证可行(如特斯拉FSD V12),统一了L2和L4的开发范式 [7] - 其局限性主要是“模仿学习”,能力上限受限于训练数据,缺乏逻辑推理 [12] 世界模型 (World Model) - 是核心算法演进中的关键基础设施,扮演“中间加速器”的角色 [7][10] - 主要作用分为两方面: - **对内(训练)**:作为“超级模拟器”,生成大量合成数据以解决长尾问题,并让端到端模型在虚拟环境中通过强化学习反复试错迭代,实现从“数据闭环”到“训练闭环”的演进 [2][8][11][18] - **对外(推理)**:作为“预测机”,帮助车辆理解物理规律和因果关系,直接指导动作生成 [9][11] - 3DGS(3D Gaussian Splatting)是构建高保真仿真环境的重要技术 [3] 视觉-语言-动作模型 (VLA) 与 世界-动作模型 (WA) - **VLA派(理想、英伟达)**:认为需要引入大语言模型赋予车辆逻辑推理(Chain of Thought)和解释能力,以处理复杂、罕见的长尾场景(System 2,慢思考) [9][11][12] - **WA/反VLA派(华为、小鹏)**:认为驾驶主要是直觉反应,引入语言环节会增加延迟和算力负担,主张直接从世界模型理解映射到动作(System 1,快思考) [9][11] - **务实派(小米)**:当前主推“端到端+世界模型+强化学习”解决直觉问题,内部预研VLA以备复杂推理需求,追求“智能密度”最大化 [9][11] 主要公司技术选择对比 | 公司 | 核心技术路线选择 | 核心逻辑与观点 | 世界模型/仿真工具的角色 | | :--- | :--- | :--- | :--- | | **理想汽车** | VLA (Vision-Language-Action) | 认知驱动,认为需从“模仿”进化到“自己学会”,单纯数据闭环不够,必须走向训练闭环 [9] | 利用《World4Drive》等模型构建可探索的虚拟世界,进行策略优化,是训练闭环的核心 [9] | | **英伟达 (NVIDIA)** | 物理AI + VLA (Alpamayo) | 强调AI的可解释性与推理能力,不仅要会开,还要能解释决策,并强调“Test time Scaling”(让AI多思考一会儿) [9] | 使用Omniverse & Cosmos生成合成数据和进行物理模拟,训练车辆学习物理定律 [9] | | **小米汽车** | 端到端 + 世界模型 + 强化学习 (预研VLA) | 智能密度最大化,当前方案优先解决“直觉”(System 1)问题,VLA类似“看悬疑片”(System 2),仅用于极复杂场景,不制造技术焦虑 [9][17] | 使用高保真模拟器进行强化学习训练,解决实车难以覆盖的长尾场景 [9] | | **地平线** | 一段式端到端 (One-Stage) | 范式统一,认为FSD V12证明了端到端的可行性,未来三年是“极致优化期”,旨在统一L2与L4的开发范式 [9] | 未详细展开,主要强调通过统一范式和低成本部署打通壁垒 [9] | | **华为 / 小鹏** | WA (World Action) / 反VLA | 去语言化,认为驾驶主要是直觉反应,不需要经过语言环节,以降低延迟和算力负担 [9] | 利用世界模型理解环境演变,直接指导动作生成 [9] | 非核心技术关键因素 研发基建与工程效率 - 基建(以数据为核心的研发效能)决定迭代速度,好的基建能大幅提升研发效率,例如小米能在一年内实现“追三代”的技术跨越,核心在于云端基建的复用和自动化率提升 [3][18] - 基建的好坏取决于发现问题后,能否迅速从海量数据中挖掘出类似场景,并形成高质量标注数据进行训练 [18] - 强化工程能力和组织能力被视为公司的“工业母机”,是应对技术范式变化的确定性方法 [18] 仿真与合成数据 - 仿真成为解决长尾问题(Corner Case)的核心,单纯依赖真实路测数据已无法满足需求 [14] - 合成数据价值极高,例如在小米的训练数据中,仿真数据占比约为20%,但节省了数倍的人力成本 [18] - 英伟达通过Cosmos世界模型生成符合物理定律的合成数据来训练自动驾驶模型 [18] - 理想汽车等公司强调从“数据闭环”走向“训练闭环”,让AI在虚拟世界中进行强化学习,自我探索最优策略 [18] 算力规模与芯片适配 - 智驾是算力和硬件的“暴力美学”,计算机工业的本质就是“玩命堆算力” [15][18] - 英伟达发布Rubin平台以应对每年增长5倍的AI推理需求,旨在将推理成本降低至原来的1/10 [18] - 算法上车面临巨大的“部署偏差”,从一颗芯片迁移到另一颗芯片通常需要6-10个月解决算子支持、计算精度对齐等问题,这种高昂的迁移成本构成了芯片厂商的护城河 [18] - 随着AI进行长序思考(System 2),车载芯片的“显存”面临巨大挑战 [18] 商业化成本与泛化能力 - 技术再先进也需考虑成本,智驾系统的目标是将L4级体验以极低的部署成本普及到10万元级别车型 [18] - 新一代端到端技术通过数据驱动,在一个复杂城市验证后,能大概率泛化到整个国家,极大地降低了扩张成本 [18] 用户体验与安全冗余 - 技术先进性不等于体验更好,必须在收益和风险之间取得平衡,避免为了“显摆技术”而制造焦虑 [17] - 安全机制至关重要,即便是激进的端到端方案也需要安全兜底,例如英伟达的方案中包含了一个经典的规则驱动AV栈作为安全护栏,在端到端模型信心不足时回退 [19]