传统规控

搜索文档
传统规划控制不太好找工作了。。。
自动驾驶之心· 2025-07-11 14:46
行业趋势分析 - 自动驾驶规划控制岗位从传统逻辑兜底转向规则算法与端到端结合的技术路线[2] - 端到端和VLA(Vision-Language-Action)量产趋势正在挤压传统规划控制生存空间[2] - 2025年端到端技术进一步落地但传统规控在L4高安全性场景仍占主导地位[4] 岗位能力要求 - 基础能力需覆盖横纵联合/解耦框架、搜索/采样/运动学规划算法[4] - 差异化竞争力体现在不确定环境下的Contingency Planning和博弈式交互规划能力[4] - 端到端技术(一段式/二段式)、VLM/VLA与大模型结合成为必备技能[4][29] 课程核心价值 - 覆盖经典规控方案与端到端融合落地方案,包含2个可直接写入简历的工程项目[7][13] - 通过博弈交互式规划和防御式规划等头部公司重点研究方向提升竞争力[24][26] - 学完对标2-3年算法工程师经验,前两期学员入职华为/百度/蔚小理等企业[8][10] 课程体系设计 - 基础算法模块:搜索/采样/优化/深度学习等规划算法对比与应用场景选择[20] - 决策规划框架:路径-速度解耦、时空联合及数据驱动框架构建[21][22] - 端到端专项:分析VLM/VLA技术优势与局限性,探讨数据驱动收益最大化[29] - 面试闭环服务:简历修改+模拟面试+公司推荐,直击华为等大厂招聘标准[31][36] 技术落地方向 - 防御式规划(Contingency Planning)解决感知/定位/社会车意图不确定性[24] - 博弈论模型实现自车与他车轨迹联合优化,突破传统预测-规划链路局限[26] - 端到端系统与传统规控融合方案成为量产落地关键突破点[4][29] 教学资源配置 - 采用C++/Python双语言开发,代码开源并提供容器运行环境[15][17] - 直播+录播形式授课,配备VIP群答疑及3个月内持续服务[12][17] - 赠送《规划控制理论&实战课程》并配套500元简历修改服务[36]
传统规控和端到端岗位的博弈......(附招聘)
自动驾驶之心· 2025-07-10 11:03
行业技术趋势 - 端到端自动驾驶技术正快速冲击传统规控方法 其场景泛化能力和数据驱动特性显著优于基于规则的系统 [2] - 传统规控依赖人工编写规则(PID/LQR/MPC等算法) 优势在于可解释性强但难以覆盖所有场景 [2] - 端到端方案直接从传感器映射控制指令 减少模块化架构的信息损失 实现全局优化 [4] 技术方案对比 端到端方案 - 优势:降低系统复杂性 通过数据学习人类驾驶风格 支持全流程联合优化 [4] - 劣势:决策过程黑箱化 需海量训练数据 极端场景依赖规则兜底 [4] 传统PNC方案 - 优势:模块功能明确 已知场景稳定性高 适合高安全需求场景 [5] - 劣势:多模块协同开发成本高 复杂场景规则覆盖有限 依赖高精地图 [5] 技术融合方向 - 行业实践表明端到端与PNC呈互补关系 如华为ADAS3.0采用传统规控作为安全冗余 [6] - 传统规控工程师转型需结合端到端技术 复合型人才更具竞争力 [7] 人才需求现状 规控算法工程师 - 岗位职责覆盖城区/高速/停车场等多场景决策规划算法开发 需掌握MPC/PID等经典算法 [10] - 任职要求硕士以上学历 熟悉强化学习算法 有Apollo等开源项目经验者优先 [10] - 薪资范围40k-100k/月 工作地集中在北京/上海 [10] 端到端工程师 - 核心任务包括VLA模型构建、训练数据集优化及闭环评测系统研发 [12] - 薪资30k-80k/月 工作地分布在深圳/上海 [12] 视觉算法专家 - 技术要求涵盖轻图感知、占据格网络研发及视觉大模型应用开发 [18] - 优先考虑有顶会论文或算法竞赛获奖经历者 薪资40k-80k/月 [17][18]