Workflow
噬菌体辅助非连续进化(PANCE)技术
icon
搜索文档
乔治·丘奇最新论文:定向进化出更精准、高效的碱基编辑器
生物世界· 2025-12-20 16:00
碱基编辑器技术背景与挑战 - 碱基编辑器是一种新一代基因编辑技术,可在不造成DNA双链断裂的情况下实现单个碱基的精准转换,理论上可纠正大多数已知的人类致病性单碱基突变,在治疗遗传疾病方面潜力巨大[1] - 该技术存在“旁观者编辑”问题,即脱氨酶在作用时可能修改编辑窗口内的非目标碱基,这引发了对其临床应用可行性和安全性的深刻担忧[1] - 此前减少旁观者编辑的策略(如理性设计脱氨酶、改进向导RNA)往往以牺牲编辑效率为代价,且效果高度依赖于序列上下文[1] 哈佛大学团队的研究方法与核心策略 - 哈佛大学乔治·丘奇团队于2025年12月19日在《Nature Biotechnology》发表研究,提出一种多管齐下的方法,通过优化gRNA和脱氨酶来最小化旁观者编辑,同时不牺牲编辑效率[1][2] - 该研究建立了一个可扩展的碱基编辑器精准工程框架,整合了三种互补技术:工程改造gRNA、利用噬菌体辅助非连续进化技术选择性进化编辑器、借助蛋白质语言模型理性设计脱氨酶[5] 具体技术实现与实验成果 - 研究团队设计并测试了一个包含约60000种不同3‘端延伸的sgRNA库(锚定向导RNA,agRNA),以提高腺嘌呤碱基编辑器的精度[6] - 利用噬菌体辅助非连续进化系统,将碱基编辑活性与噬菌体复制能力关联,创造双重选择压力,成功进化出编辑窗口更窄的变体[6] - 进化得到的V28C变体在目标位点的编辑效率显著提高,同时旁观者编辑显著减少,对约12000个致病突变的编辑模式分析表明,其精度约为ABE8e的两到三倍,效率提高了约20%[6] - 利用蛋白质语言模型预测了21个可能有益的突变,其中M151E突变在实验验证中显著缩小了编辑窗口,同时提高了目标位点的编辑效率[7] - 在临床相关场景测试中,V28C变体对心血管疾病靶点PCSK9和早发性帕金森病相关突变SNCA E46K实现了高效且高精度编辑[7] 研究意义与行业影响 - 该工作通过整合gRNA工程、定向进化和机器学习,提供了一种系统策略,能够在不降低编辑效率的情况下提高碱基编辑的精度[9] - 这些进展为更安全、更有效的碱基编辑治疗应用开辟了道路[9]