Workflow
带可验证奖励的强化学习(RLVR)
icon
搜索文档
VLA+RL还是纯强化?从200多篇工作中看强化学习的发展路线
具身智能之心· 2025-08-18 08:07
视觉强化学习综述 核心观点 - 该综述对视觉强化学习(VRL)领域进行系统性梳理,整合200+篇研究成果,提出四大主题支柱:多模态大型语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,并分析算法设计、奖励工程及评估协议 [5] - 强调强化学习在视觉任务中的关键作用,包括跨模态对齐、长序列优化及可验证奖励设计,同时指出开放挑战如推理效率、长视野信用分配等 [47] 研究框架 强化学习范式 - **RLHF(基于人类反馈的强化学习)**:通过三元组偏好数据训练奖励模型,结合PPO优化策略,三阶段流程(监督预训练→奖励建模→策略优化)成为主流 [10] - **DPO(直接偏好优化)**:绕过奖励建模环节,直接通过封闭式监督目标优化策略,降低计算成本 [11] - **RLVR(带可验证奖励的强化学习)**:用确定性验证信号(如代码测试结果)替代人类偏好,提升客观性 [12] 策略优化算法 - **PPO(近端策略优化)**:通过重要性采样和广义优势估计实现稳定策略更新,依赖精确奖励模型 [15] - **GRPO(群体相对策略优化)**:利用群体归一化优势信号替代价值网络,降低内存消耗并提升训练稳定性 [16] 应用领域 多模态大型语言模型 - **传统方法**:通过GRPO/PPO将视觉-语言模型与可验证奖励对齐,如RePIC、GoalLadder等 [17] - **空间感知**:2D任务(目标检测、分割)和3D任务(布局推理)均采用规则驱动奖励和KL正则化微调 [18] - **视频推理**:分层奖励设计(如VQ-Insight)和时间衰减回报(如TW-GRPO)解决长序列挑战 [20] 视觉生成 - **图像生成**:DiffPPO等结合扩散模型与感知奖励(如ImageReward),提升生成质量 [21] - **3D生成**:DreamCS等通过渲染-比较循环优化几何结构,强化学习实现标准方法难以达到的保真度 [24] 视觉-语言-动作模型 - **GUI自动化**:规则驱动奖励(如GUI-R1)和群体归一化更新(如UIShift)推动跨平台交互 [28] - **视觉导航**:OctoNav-R1等结合第一人称视觉与低级动作控制,通过混合强化学习管道提升泛化性 [29] 评估体系 - **多模态模型**:结合外部基准(如MME)、人类偏好奖励和KL散度监控 [35] - **视觉生成**:FID/CLIP Score等传统指标与去噪轨迹诊断结合 [36] - **GUI任务**:在线成功率与逐步奖励设计(如Mind2web)平衡稀疏信号问题 [39] 未来方向 - **自适应推理**:通过终止评论者动态平衡深度与效率 [43] - **长视野优化**:子目标发现与对比视觉-语言评论者缓解稀疏奖励问题 [44] - **奖励模型设计**:需开发抗攻击、跨模态且用户可定制的综合奖励函数 [46]
视觉强化学习最新综述:全领域梳理(新加坡国立&浙大&港中文)
自动驾驶之心· 2025-08-16 08:03
研究背景与综述定位 - 视觉强化学习(Visual RL)的爆发源于强化学习在大语言模型(LLM)中的成功迁移,特别是RLHF(人类反馈强化学习)显著提升了LLM的人类偏好对齐与复杂推理能力[7] - 当前领域面临三大核心挑战:复杂奖励信号下的策略优化稳定性、高维视觉输入的高效处理、长周期决策场景的可扩展奖励函数设计[7] - 综述核心目标包括形式化视觉RL问题、分类200+研究为四大支柱(多模态LLM/视觉生成/统一模型/VLA模型)、分析算法设计与评估体系[8] 视觉强化学习的理论基础 - 问题建模采用马尔可夫决策过程(MDP),将文本/图像/视频生成统一为episodic MDP框架,状态包含用户prompt和已生成动作序列[15] - 三大对齐范式:RLHF(三阶段流程:SFT→奖励模型→PPO优化)、DPO(直接优化偏好数据)、RLVR(可验证奖励替代主观偏好)[18][19][20] - 策略优化算法PPO(带价值网络与KL惩罚)和GRPO(组相对优势+移除价值网络)分别适用于通用场景和内存密集型任务[26][27] 四大核心应用领域 多模态大语言模型(MLLM) - 常规RL驱动型MLLM使用可验证奖励(如精确匹配/IoU)优化VLM骨干,代表模型包括RePIC、GoalLadder、GRPO-CARE[32] - 空间感知方向分为2D(Omni-R1双系统GRPO优化情感识别)和3D(MetaSpatial用渲染深度奖励优化AR场景生成)[34] - 图像推理分为"基于图像思考"(SVQA-R1用视图一致性奖励)和"用图像思考"(GRIT优化答案正确性+框精度)[35] 视觉生成 - 图像生成三大奖励范式:人类中心偏好优化(ImageReward)、多模态推理对齐(UnifiedReward)、Metric驱动优化(DDPO最小化FID)[37][40] - 视频生成通过偏好模型优化(InstructVideo)、组相对优化(DanceGRPO)、领域特定奖励(Phys-AR惩罚物理定律违反)提升时序一致性[41] - 3D生成采用RL优化文本-网格生成(DreamCS融合轮廓IoU与CLIP对齐)、交互式编辑(Nabla-R2D3用实时渲染验证奖励)[41] 视觉-语言-动作模型(VLA) - GUI自动化分桌面(GUI-R1映射点击成功为稠密奖励)和移动场景(AgentCPM-GUI压缩动作空间适配设备)[42] - 视觉导航采用端到端RL(VLN-R1时间衰减奖励处理轨迹)和仿真微调(Flare实现家居场景泛化)[45] - 机器人操纵通过任务接地奖励(TGRPO)、课程式RL(RLVLA提升重排成功率)优化长周期规划[45] 评估指标与未来方向 - 分层评估框架包含集合级(FID/FVD)、样本级(人类偏好分数)、状态级(KL散度监控策略漂移)[46][48][49] - 开放挑战包括有效推理平衡(自适应周期策略)、VLA长周期RL(分层子目标发现)、视觉思考RL(混合动作空间设计)[50][51][52] - 奖励模型设计需融合低阶信号(几何一致性)与高阶偏好,并实现跨模态泛化与动态更新[53][56]
仅需1个数据,就能让大模型的数学推理性能大大增强?
机器之心· 2025-05-09 17:02
大型语言模型(LLM)推理能力研究 核心观点 - 采用单个数学训练数据的1-shot RLVR方法可显著提升大型语言模型在数学推理任务上的表现,且效果与使用1.2k数据集相当 [2][3] - 1-shot RLVR的泛化能力不仅限于数学任务,还能拓展至非数学推理任务如ARC-Easy/Challenge [5] - 该方法在多种模型(Qwen2.5-Math-1.5B/7B、Llama-3.2-3B-Instruct等)和算法(GRPO、PPO)上均有效 [16][17] 方法细节 - 训练使用三项损失函数:policy gradient loss(基于0-1结果奖励)、KL divergence loss(保持语言质量)、entropy loss(鼓励多样性)[7] - 数据选择基于historical variance score,优先选取训练过程中准确度方差较大的数据,但1-shot RLVR对低方差数据同样有效 [8] - 性能提升主要源于policy gradient loss,与KL loss和weight decay关联性较低 [19] 实验发现 - **性能提升幅度**:1-shot RLVR使Qwen2.5-Math-1.5B在MATH500上的准确率从36%提升至73.6%,Qwen2.5-Math-7B从51%提升至79.2% [3] - **饱和后泛化**:单个训练样本的准确率快速饱和至近100%,但下游任务表现持续提升,过拟合在百万次rollout后才出现 [10][11] - **跨主题泛化**:单个几何训练数据可同时提升代数、数论等其他数学主题的表现 [13] - **自我反思增强**:下游任务中自我反思相关词汇频率显著增加 [14] 消融实验 - 移除KL loss和weight decay对1-shot RLVR效果影响较小,但entropy loss能进一步优化表现,尤其在饱和后泛化阶段 [19][20] - 仅使用entropy loss进行少量训练也能提升模型表现,即使训练数据标签错误仍可能部分有效 [20] 应用与启示 - 1-shot RLVR表明基础模型本身具备潜在推理能力,少量数据即可激发 [22] - 该方法对RLVR数据选择算法设计、探索机制优化及少样本应用场景具有启发意义 [22] (注:表格数据及具体实验参数详见原文引用部分 [7][17][20])