开源交易行为因子

搜索文档
金融工程定期:开源交易行为因子绩效月报(2025年5月)-20250530
开源证券· 2025-05-30 21:14
量化因子与构建方式 1. **因子名称:理想反转因子** - **构建思路**:通过每日平均单笔成交金额的大小切割出反转属性最强的交易日,认为A股反转之力的微观来源是大单成交[4] - **具体构建过程**: 1. 回溯股票过去20日数据 2. 计算每日平均单笔成交金额(成交金额/成交笔数) 3. 单笔成交金额高的10个交易日涨跌幅加总为M_high 4. 单笔成交金额低的10个交易日涨跌幅加总为M_low 5. 因子值M = M_high - M_low[42] - **因子评价**:逻辑清晰,聚焦大单交易的反转效应 2. **因子名称:聪明钱因子** - **构建思路**:从分钟行情价量信息识别机构交易参与度,构造跟踪聪明钱的指标[4] - **具体构建过程**: 1. 取股票过去10日分钟数据 2. 计算每分钟指标 $$S_t = |R_t| / V_t^{0.25}$$($$R_t$$为分钟涨跌幅,$$V_t$$为分钟成交量) 3. 按$$S_t$$排序,取成交量累积前20%的分钟作为聪明钱交易 4. 计算聪明钱VWAP(成交量加权均价)与整体VWAP的比值Q = VWAPsmart/VWAPall[41][43] - **因子评价**:有效捕捉机构交易行为特征 3. **因子名称:APM因子** - **构建思路**:衡量股价在日内不同时段(上午/下午)的行为差异[4] - **具体构建过程**: 1. 取股票过去20日隔夜与下午收益率数据 2. 回归计算残差:$$r = \alpha + \beta R + \epsilon$$ 3. 计算隔夜与下午残差差异统计量: $$\mathrm{stat}={\frac{\mu(\delta_{t})}{\sigma(\delta_{t})/{\sqrt{N}}}}$$ 4. 对动量因子回归取残差作为APM因子[44][45] - **因子评价**:揭示日内交易模式的结构性差异 4. **因子名称:理想振幅因子** - **构建思路**:基于股价维度切割振幅,分析高价态与低价态的信息差异[4] - **具体构建过程**: 1. 计算股票过去20日振幅(最高价/最低价-1) 2. 高价振幅V_high = 收盘价最高25%交易日的振幅均值 3. 低价振幅V_low = 收盘价最低25%交易日的振幅均值 4. 因子值V = V_high - V_low[47] - **因子评价**:有效区分不同价格区间的振幅信息 5. **因子名称:交易行为合成因子** - **构建思路**:加权整合四个交易行为因子,提升稳定性[31] - **具体构建过程**: 1. 对单因子进行行业去极值与标准化 2. 滚动12期ICIR加权计算合成因子值[31] 因子回测效果 1. **理想反转因子** - 全历史IC均值:-0.050 - 全历史rankIC均值:-0.061 - 全历史IR:2.52 - 全历史多空胜率:78.0% - 2025年5月收益:-0.63% - 近12月胜率:66.7%[5][14] 2. **聪明钱因子** - 全历史IC均值:-0.037 - 全历史rankIC均值:-0.061 - 全历史IR:2.73 - 全历史多空胜率:81.9% - 2025年5月收益:-0.86% - 近12月胜率:91.7%[5][18] 3. **APM因子** - 全历史IC均值:0.029 - 全历史rankIC均值:0.034 - 全历史IR:2.28 - 全历史多空胜率:77.1% - 2025年5月收益:-1.03% - 近12月胜率:66.7%[5][22] 4. **理想振幅因子** - 全历史IC均值:-0.054 - 全历史rankIC均值:-0.073 - 全历史IR:2.99 - 全历史多空胜率:83.4% - 2025年5月收益:-1.50% - 近12月胜率:75.0%[5][26] 5. **交易行为合成因子** - 全历史IC均值:0.067 - 全历史rankIC均值:0.092 - 全历史IR:3.28 - 全历史多空胜率:82.3% - 2025年5月收益:-1.58% - 近12月胜率:83.3%[5][31] - 中小盘表现:国证2000 IR=2.95,中证1000 IR=2.92[31]