Workflow
理想振幅因子
icon
搜索文档
金融工程定期:开源交易行为因子绩效月报(2025年6月)-20250630
开源证券· 2025-06-30 14:14
量化因子与构建方式 1. **因子名称:理想反转因子** - **构建思路**:通过每日平均单笔成交金额的大小切割出反转属性最强的交易日,认为A股反转之力的微观来源是大单成交[5][15] - **具体构建过程**: 1. 回溯股票过去20日数据 2. 计算每日平均单笔成交金额(成交金额/成交笔数) 3. 单笔成交金额高的10个交易日涨跌幅加总为M_high 4. 单笔成交金额低的10个交易日涨跌幅加总为M_low 5. 因子值M = M_high - M_low[43] - **因子评价**:逻辑清晰,聚焦大单交易的反转效应 2. **因子名称:聪明钱因子** - **构建思路**:从分钟行情价量信息中识别机构交易参与度,构造跟踪聪明钱的指标[5][15] - **具体构建过程**: 1. 回溯股票过去10日分钟行情数据 2. 计算每分钟指标 $$S_t = |R_t|/(V_t)^{0.25}$$,其中$R_t$为分钟涨跌幅,$V_t$为分钟成交量 3. 按$S_t$排序取成交量累积占比前20%的分钟作为聪明钱交易 4. 计算聪明钱交易VWAP(VWAPsmart)和全部交易VWAP(VWAPall) 5. 因子值Q = VWAPsmart/VWAPall[42][44] - **因子评价**:有效捕捉机构交易行为特征 3. **因子名称:APM因子** - **构建思路**:利用日内不同时段交易行为模式差异,衡量隔夜与下午残差差异[5][15] - **具体构建过程**: 1. 回溯20日数据,提取隔夜股票收益率$r_{night}$、指数收益率$R_{night}$,下午股票收益率$r_{afternoon}$、指数收益率$R_{afternoon}$ 2. 回归$r = \alpha + \beta R + \epsilon$得到40个残差(隔夜/下午各20个) 3. 计算每日隔夜与下午残差差值$\delta_t = \epsilon_{night} - \epsilon_{afternoon}$ 4. 构造统计量 $$\mathrm{stat}={\frac{\mu(\delta_{t})}{\sigma(\delta_{t})/{\sqrt{N}}}}$$ 5. 对动量因子横截面回归取残差作为APM因子[45][46] 4. **因子名称:理想振幅因子** - **构建思路**:基于股价维度切割振幅,挖掘不同价态下振幅信息差异[5][15] - **具体构建过程**: 1. 回溯20日数据计算每日振幅(最高价/最低价-1) 2. 选取收盘价较高的25%交易日计算高价振幅均值V_high 3. 选取收盘价较低的25%交易日计算低价振幅均值V_low 4. 因子值V = V_high - V_low[48] 5. **因子名称:交易行为合成因子** - **构建思路**:加权合成上述四类交易行为因子[32] - **具体构建过程**: 1. 对单因子进行行业内去极值与标准化 2. 滚动12期ICIR作为权重加权合成 因子回测效果 1. **理想反转因子** - 全历史IC均值:-0.050 - 全历史rankIC均值:-0.061 - 全历史IR:2.53 - 全历史多空对冲胜率:78.1% - 2025年6月收益:1.09% - 近12月胜率:66.7%[16][7] 2. **聪明钱因子** - 全历史IC均值:-0.037 - 全历史rankIC均值:-0.061 - 全历史IR:2.74 - 全历史多空对冲胜率:82.1% - 2025年6月收益:0.91% - 近12月胜率:91.7%[19][7] 3. **APM因子** - 全历史IC均值:0.029 - 全历史rankIC均值:0.034 - 全历史IR:2.27 - 全历史多空对冲胜率:76.6% - 2025年6月收益:-0.11% - 近12月胜率:58.3%[23][7] 4. **理想振幅因子** - 全历史IC均值:-0.054 - 全历史rankIC均值:-0.073 - 全历史IR:3.01 - 全历史多空对冲胜率:83.5% - 2025年6月收益:2.43% - 近12月胜率:75.0%[27][7] 5. **交易行为合成因子** - 全历史IC均值:0.067 - 全历史rankIC均值:0.092 - 全历史IR:3.30 - 全历史多空对冲胜率:82.4% - 2025年6月收益:1.12% - 近12月胜率:83.3% - 多头对冲年化收益:8.64% - 收益波动比:2.75 - 国证2000/中证1000/中证800的IR:2.93/2.85/1.26[32][36][37] Barra风格因子表现(2025年6月) - 市值因子收益:-0.42% - 账面市值比因子收益:0.09% - 成长因子收益:-0.05% - 盈利预期因子收益:-0.11%[4][14]
金融工程定期:开源交易行为因子绩效月报(2025年5月)-20250530
开源证券· 2025-05-30 21:14
量化因子与构建方式 1. **因子名称:理想反转因子** - **构建思路**:通过每日平均单笔成交金额的大小切割出反转属性最强的交易日,认为A股反转之力的微观来源是大单成交[4] - **具体构建过程**: 1. 回溯股票过去20日数据 2. 计算每日平均单笔成交金额(成交金额/成交笔数) 3. 单笔成交金额高的10个交易日涨跌幅加总为M_high 4. 单笔成交金额低的10个交易日涨跌幅加总为M_low 5. 因子值M = M_high - M_low[42] - **因子评价**:逻辑清晰,聚焦大单交易的反转效应 2. **因子名称:聪明钱因子** - **构建思路**:从分钟行情价量信息识别机构交易参与度,构造跟踪聪明钱的指标[4] - **具体构建过程**: 1. 取股票过去10日分钟数据 2. 计算每分钟指标 $$S_t = |R_t| / V_t^{0.25}$$($$R_t$$为分钟涨跌幅,$$V_t$$为分钟成交量) 3. 按$$S_t$$排序,取成交量累积前20%的分钟作为聪明钱交易 4. 计算聪明钱VWAP(成交量加权均价)与整体VWAP的比值Q = VWAPsmart/VWAPall[41][43] - **因子评价**:有效捕捉机构交易行为特征 3. **因子名称:APM因子** - **构建思路**:衡量股价在日内不同时段(上午/下午)的行为差异[4] - **具体构建过程**: 1. 取股票过去20日隔夜与下午收益率数据 2. 回归计算残差:$$r = \alpha + \beta R + \epsilon$$ 3. 计算隔夜与下午残差差异统计量: $$\mathrm{stat}={\frac{\mu(\delta_{t})}{\sigma(\delta_{t})/{\sqrt{N}}}}$$ 4. 对动量因子回归取残差作为APM因子[44][45] - **因子评价**:揭示日内交易模式的结构性差异 4. **因子名称:理想振幅因子** - **构建思路**:基于股价维度切割振幅,分析高价态与低价态的信息差异[4] - **具体构建过程**: 1. 计算股票过去20日振幅(最高价/最低价-1) 2. 高价振幅V_high = 收盘价最高25%交易日的振幅均值 3. 低价振幅V_low = 收盘价最低25%交易日的振幅均值 4. 因子值V = V_high - V_low[47] - **因子评价**:有效区分不同价格区间的振幅信息 5. **因子名称:交易行为合成因子** - **构建思路**:加权整合四个交易行为因子,提升稳定性[31] - **具体构建过程**: 1. 对单因子进行行业去极值与标准化 2. 滚动12期ICIR加权计算合成因子值[31] 因子回测效果 1. **理想反转因子** - 全历史IC均值:-0.050 - 全历史rankIC均值:-0.061 - 全历史IR:2.52 - 全历史多空胜率:78.0% - 2025年5月收益:-0.63% - 近12月胜率:66.7%[5][14] 2. **聪明钱因子** - 全历史IC均值:-0.037 - 全历史rankIC均值:-0.061 - 全历史IR:2.73 - 全历史多空胜率:81.9% - 2025年5月收益:-0.86% - 近12月胜率:91.7%[5][18] 3. **APM因子** - 全历史IC均值:0.029 - 全历史rankIC均值:0.034 - 全历史IR:2.28 - 全历史多空胜率:77.1% - 2025年5月收益:-1.03% - 近12月胜率:66.7%[5][22] 4. **理想振幅因子** - 全历史IC均值:-0.054 - 全历史rankIC均值:-0.073 - 全历史IR:2.99 - 全历史多空胜率:83.4% - 2025年5月收益:-1.50% - 近12月胜率:75.0%[5][26] 5. **交易行为合成因子** - 全历史IC均值:0.067 - 全历史rankIC均值:0.092 - 全历史IR:3.28 - 全历史多空胜率:82.3% - 2025年5月收益:-1.58% - 近12月胜率:83.3%[5][31] - 中小盘表现:国证2000 IR=2.95,中证1000 IR=2.92[31]
金融工程定期:开源交易行为因子绩效月报(2025年4月)-20250430
开源证券· 2025-04-30 17:44
量化因子与构建方式 1. **因子名称:理想反转因子** - **构建思路**:通过识别大单成交日来捕捉A股反转效应的微观来源,切割出反转属性最强的交易日[5][15] - **具体构建过程**: 1. 回溯股票过去20日数据,计算每日平均单笔成交金额(成交金额/成交笔数)[49] 2. 筛选单笔成交金额最高的10个交易日,计算其涨跌幅总和记为M_high 3. 筛选单笔成交金额最低的10个交易日,计算其涨跌幅总和记为M_low 4. 因子值M = M_high - M_low[49] - **评价**:因子逻辑清晰,聚焦大单驱动的反转效应,历史表现稳健[5][16] 2. **因子名称:聪明钱因子** - **构建思路**:从分钟级价量数据中识别机构交易行为,构造反映聪明钱交易价位的因子[5][15] - **具体构建过程**: 1. 取股票过去10日分钟行情数据,计算每分钟指标 $$S_t = |R_t| / (V_t)^{0.25}$$,其中$R_t$为分钟涨跌幅,$V_t$为分钟成交量[47] 2. 按$S_t$排序,选取成交量累积占比前20%的分钟作为聪明钱交易 3. 计算聪明钱交易的VWAP(VWAPsmart)和全部交易的VWAP(VWAPall) 4. 因子值Q = VWAPsmart / VWAPall[47] - **评价**:有效捕捉机构交易痕迹,因子区分度高[5][21] 3. **因子名称:APM因子** - **构建思路**:通过分析日内不同时段(上午/下午)股价行为差异构建反转因子[5][15] - **具体构建过程**: 1. 取股票过去20日数据,计算每日隔夜收益率$r_{night}$和下午收益率$r_{afternoon}$[48] 2. 对40组收益率数据回归:$$r = \alpha + \beta R + \epsilon$$(R为对应时段指数收益率) 3. 计算隔夜与下午残差差值$\delta_t = \epsilon_{night} - \epsilon_{afternoon}$ 4. 构造统计量 $$\mathrm{stat} = \frac{\mu(\delta_t)}{\sigma(\delta_t)/\sqrt{N}}$$[48] 5. 对动量因子回归取残差作为最终因子值[50] - **评价**:揭示日内交易模式差异,但需控制动量干扰[5][25] 4. **因子名称:理想振幅因子** - **构建思路**:基于股价高低状态切割振幅信息,捕捉结构性差异[5][15] - **具体构建过程**: 1. 计算股票过去20日每日振幅(最高价/最低价-1)[51] 2. 选取收盘价最高的25%交易日,计算振幅均值V_high 3. 选取收盘价最低的25%交易日,计算振幅均值V_low 4. 因子值V = V_high - V_low[51] - **评价**:价态切割增强信息纯度,多空收益显著[5][30] 5. **因子名称:交易行为合成因子** - **构建思路**:加权整合四个交易行为因子,提升稳定性[35] - **具体构建过程**: 1. 对单因子进行行业内去极值和标准化处理 2. 滚动12期ICIR加权计算合成因子值[35] - **评价**:组合效果优于单因子,尤其在中小盘股票中表现突出[35][42] --- 因子的回测效果 1. **理想反转因子** - 全历史IC均值:-0.051 - 全历史rankIC均值:-0.061 - 全历史IR:2.55 - 全历史多空对冲胜率:78.5% - 2025年4月多空收益:0.89% - 近12月胜率:66.7%[16][20] 2. **聪明钱因子** - 全历史IC均值:-0.038 - 全历史rankIC均值:-0.061 - 全历史IR:2.78 - 全历史多空对冲胜率:82.5% - 2025年4月多空收益:0.89% - 近12月胜率:100.0%[21][25] 3. **APM因子** - 全历史IC均值:0.030 - 全历史rankIC均值:0.034 - 全历史IR:2.32 - 全历史多空对冲胜率:77.6% - 2025年4月多空收益:-0.27% - 近12月胜率:75.0%[25][29] 4. **理想振幅因子** - 全历史IC均值:-0.054 - 全历史rankIC均值:-0.073 - 全历史IR:3.04 - 全历史多空对冲胜率:83.9% - 2025年4月多空收益:2.52% - 近12月胜率:83.3%[30][34] 5. **交易行为合成因子** - 全历史IC均值:0.068 - 全历史rankIC均值:0.092 - 全历史IR:3.36 - 全历史多空对冲胜率:82.2% - 2025年4月多空收益:0.99% - 近12月胜率:83.3%[35][40] - 国证2000中IR:3.00,中证1000中IR:2.98,中证800中IR:1.30[42] --- Barra风格因子表现(2025年4月) - 市值因子收益:0.09% - 账面市值比因子收益:0.11% - 成长因子收益:-0.19% - 盈利预期因子收益:-0.02%[4][14]