开源模型与框架
搜索文档
从模型到生态:2025 全球机器学习技术大会「开源模型与框架」专题前瞻
AI科技大本营· 2025-09-26 13:49
开源与闭源AI模型性能趋势 - 2025年开源与闭源模型的性能差距已从常见的8%缩小至1.7% [1] 2025全球机器学习技术大会专题设置 - 大会特设“开源模型与框架”专题,聚焦底层构件的开源创作与实践 [1] - AI竞争已扩展至数据、模型、系统和评测四大支柱 [12] - 大会设置十二大前沿专题,覆盖大模型技术演进与智能体工程实践 [13] 参会机构与行业参与度 - 参会机构包括北大、清华、百度、阿里、腾讯、字节跳动等国内顶尖机构 [12][13] - 来自Meta、谷歌、阿里等公司的生态竞争围绕未来“AI操作系统”展开 [12] 重点开源项目与技术方向 - MNN-LLM项目专注于移动端大语言模型推理框架 [7][23] - vLLM项目致力于提供人人可用、快速且低成本的大模型推理服务 [7][23] - verl项目是灵活高效的大模型强化学习编程框架 [10][23] - SpecForge是用于训练投机采样模型的工具 [23] 大会核心演讲嘉宾与议题 - Lukasz Kaiser将分享推理模型的历史、现在与未来 [17] - 议题涵盖可验证奖励强化学习、腾讯混元翻译模型优化、MiniCPM端侧大模型等 [17][18] - 智能体相关议题包括AReaL异步强化学习、扣子罗盘效果评测、通义DeepResearch构建方法论等 [18]