教育心理学的脚手架理论

搜索文档
 理想基座模型负责人近期很满意的工作: RuscaRL
 理想TOP2· 2025-10-03 17:55
 文章核心观点 - 理想基座模型团队提出RuscaRL框架,旨在通过结合教育心理学的脚手架理论和量规学习,解决大语言模型在强化学习中面临的探索瓶颈问题,以提升模型的推理能力和智能上限 [1][2][8][12] - 该技术被视为一个体系性创新,其价值在于算法与基础设施的融合,而非单一算法的突破,有望同时受益于面向数字世界的MindGPT和物理世界的MindVLA [2][9] - 团队认为强化学习是大模型智能提升的关键,而当前的关键问题是如何让模型在更广泛的问题上实现能力泛化,其核心挑战在于奖励函数在非客观且结果难以准确量化的场景中的应用 [1][8]   RuscaRL框架的技术原理 - 框架核心是引入“显性脚手架”机制,通过为每个任务提供包含不同评价标准的量规来指导模型生成响应,并采用组内差异化和跨步退化策略,逐步减少外部支持以促进模型独立推理 [12][14] - 框架采用“可验证奖励”机制,利用量规设计多维度评分标准,并借助大语言模型作为评判器来生成稳定可靠的奖励信号,以增强探索的多样性和训练稳定性 [13][15] - 该框架被类比为英伟达Eureka水准的工作,同属创建元框架来解决强化学习中的关键难题,但不同于DPO那种基础理论层面的突破,其贡献更偏向框架创新和应用成效 [6]   技术价值与行业定位 - 该工作被定位为探索前景广阔但不成熟领域的高水平工作,其价值体现在明确了强化学习领域的关键问题,并提供了创新且可应用的解决方案 [8][9] - 技术潜在瓶颈包括对人工设计的高质量量规依赖较高,以及因多次采样和复杂评估导致的较大训练量和计算开销 [16] - 创新被认为源于体系能力建设,智能体强化学习的关键问题已从单点算法突破转向算法与基础设施融合的体系性问题解决 [2][9]

