Workflow
模型可解释性
icon
搜索文档
从黑箱到显微镜:大模型可解释性的现状与未来
36氪· 2025-06-17 18:57
大模型时代,AI模型的能力持续提升,在编程、科学推理和复杂问题解决等多个领域,已经展现出"博士级"专业能力。AI业界专家纷纷预测,大模型的发 展正日益接近实现AGI甚至超级智能的关键拐点。然而,深度学习模型通常被视作"黑箱",其内在运行机制无法被其开发者理解,大模型更是如此,这给 人工智能的可解释性提出了新的挑战。 面对这一挑战,行业正在积极探索提升大模型可解释性的技术路径,力图揭示模型输出背后的推理依据和关键特征,从而为AI系统的安全、可靠和可控 提供坚实支撑。然而,大模型的发展速度却远远领先于人们在可解释性方面的努力,而且这一发展速度仍在迅猛提升。因此,人们必须加快脚步,确保 AI可解释性研究能够及时跟上AI发展步伐,以发挥实质性作用。 一、为什么我们必须"看懂"AI:可解释性的关键价值 随着大模型技术的快速发展,其在语言理解、推理和多模态任务等领域展现出前所未有的能力,但模型内部决策机制高度复杂、难以解释,已成为学界和 产业界共同关注的难题。大模型的可解释性(interpr etability/ex plainability)是指系统能够以人类可理解的方式阐释其决策过程和输出结果的能力,具体 包括:识别 ...
从黑箱到显微镜:大模型可解释性的现状与未来
腾讯研究院· 2025-06-17 17:14
大模型可解释性的核心观点 - 大模型在编程、科学推理和复杂问题解决等领域展现出"博士级"专业能力,但模型内部机制高度复杂难以解释,被称为"黑箱"[1] - 大模型可解释性是指系统能够以人类可理解的方式阐释其决策过程和输出结果的能力,包括识别关键输入特征、揭示推理路径和解释行为因果关系[3] - 生成式AI的可解释性问题尤其复杂,因为其内部机制属于"涌现"现象,而非直接设计,类似于培育生物的过程[4] - 大模型发展速度远超可解释性研究进展,行业必须加快脚步确保可解释性研究能跟上AI发展步伐[1] 可解释性的关键价值 - 防范AI系统价值偏离与不良行为:可解释性可帮助检测模型是否存在欺骗、权力寻求等异常行为[4][5] - 推动模型调试改进:通过检查模型内部可定位错误行为原因,针对性调整训练数据或模型结构[6] - 防范AI滥用风险:深入观察模型内部可系统性阻止越狱攻击,封堵绕过限制的漏洞[7] - 推动高风险场景落地:金融、司法等领域要求AI决策具备可解释性以满足法律合规和建立用户信任[8] - 探索AI意识边界:可解释性有助于理解模型是否具有意识,为未来AI道德考量提供基础[9] 破解AI黑箱的技术路径 - 自动化解释:利用大模型解释小模型,如GPT-4为GPT-2神经元自动生成自然语言描述[12] - 特征可视化:使用稀疏自编码器技术提取模型内部激活特征,揭示知识组织方式[13][14] - 思维链监控:监测模型推理过程以识别异常行为,如DeepSeek R1公开思维链推理过程[15][16] - 机制可解释性:Anthropic提出"AI显微镜"概念,追踪模型推理过程;DeepMind开源Gemma Scope工具[17][18] 可解释性研究的技术瓶颈 - 神经元多重语义与叠加现象:一个神经元混合表示多个概念,模型内部概念数量可能达数十亿计[19] - 解释规律普适性问题:不同模型架构间的解释规律是否通用仍待验证[19] - 人类理解的认知局限:需要发展人机交互工具将复杂机理信息转化为人类可理解形式[19][20] 行业发展趋势与建议 - OpenAI、DeepMind、Anthropic等领先AI实验室加大对可解释性研究的投入[21] - 研究方向向动态过程追踪、多模态融合等方向演进,如"AI显微镜"和"思维链溯源"[21][22] - 建议采用软法规则鼓励行业自律,如中国人工智能产业发展联盟发布《人工智能安全承诺》[24] - 未来可能实现对模型进行类似"脑部扫描"的全面检查,即"AI核磁共振"[23]
Claude 4 核心成员访谈:提升 Agent 独立工作能力,强化模型长程任务能力是关键
Founder Park· 2025-05-28 21:13
「2025 年最大的变化,是强化学习在大语言模型训练上终于开始奏效了。」 这是 Anthropic 的两位研究员,Sholto Douglas(专注于强化学习)和 Trenton Bricken(研究机制可解释 性)对于今年模型趋势变化的总结。 Gemini 2.5 Pro 和 Claude Opus 4 的发布也变相证明了这个判断。 在 Dwarkesh Podcast 这期两个半小时的采访中,两位研究员对于 RLVR(可验证奖励的强化学习)、模 型的自我意识、以及 Claude 一直专注的「模型可解释性」做了深入的讨论。 尤其是模型以及 Agent 之后的发展方向,比如人类驾驭多个 Agent 的可能性、以及现阶段应该提高模型 的底线,而不是去追究极致。还有 AI 白领在未来两年的可能性,毕竟「Agent 操作电脑」并不难,只 要环境具备。 他们还夸奖了 DeepSeek 在模型研发上的「品味」,颇有种「惺惺相惜」的感觉。 两个半小时的采访,我们还摘录了 Sholto Douglas 在另外一期播客的部分回答,聊得很深入而且很透 彻。 TLDR: 2025 年最大的变化是强化学习技术在语言模型上真正奏效了 ...