Workflow
离线强化学习
icon
搜索文档
北航团队提出新的离线分层扩散框架:基于结构信息原理,实现稳定离线策略学习|NeurIPS 2025
AI前线· 2025-10-09 12:48
研究背景与动机 - 离线强化学习的核心挑战在于如何仅利用固定的历史数据集训练有效策略,而扩散模型通过将策略学习重构为条件轨迹生成任务,能有效缓解分布外状态和动作导致的“外推误差”问题[3] - 为提升长时序任务效率,分层策略被引入扩散模型,但现有方法存在固定两层扩散层次结构和单一预定义时间尺度的局限,限制了其对不同任务复杂性的适应性和决策灵活性[2][3] - 这提出了一个核心开放性挑战:如何系统地分析历史轨迹,以构建一个既可泛化又具有任务感知能力的扩散层级结构[3] SIHD框架核心设计 - SIHD框架从层级构建、条件扩散和正则化探索三个方面进行创新设计,以应对现有方法的局限性[5] - 框架通过分析离线轨迹中内嵌的“结构信息”,自适应地构建一个多尺度的扩散层级,从而在具有稀疏奖励的长时序环境中实现高效、稳定的离线策略学习[2] - 其核心设计旨在克服固定层级结构和单一时间尺度的刚性限制,提升决策性能和灵活性[6] 基于结构信息的多尺度扩散层级构建 - SIHD首先从离线数据集中提取所有状态元素,并基于特征相似度构建一个k-近邻状态图[8] - 接着应用结构信息原理,通过HCSE优化算法最小化K-维结构熵,从而获得一个最优的树状编码结构,该树的每一层都代表了在不同粒度上对状态空间的划分[8] - 基于定义的社群结构,SIHD能够为每一条历史轨迹进行自适应的层级分割,确保每个片段内的状态都属于同一个社群,并将每个片段的末端状态定义为该层的子目标[8] - 这一过程使得SIHD能够从数据中自动推断出不同任务的动态时间尺度,构建出一个灵活的多尺度扩散层级[9] 基于结构信息增益的条件扩散模型 - 在SIHD中,每一层的扩散模型都由其上一层的子目标序列进行引导,但创造性地使用结构信息增益作为引导信号,而非传统方法依赖的局部奖励信号[10] - 对于层级中的子序列,其条件输入被定义为对应状态社群的结构信息增益,该增益项量化了从高层级社群过渡到更具体子社群所获得的“信息量”[10] - 这种引导方式不直接依赖于可能稀疏或有噪声的奖励函数,从而使生成过程更加稳定和鲁棒[10] 结构熵正则化器 - SIHD引入了一个结构熵正则化器,旨在缓解对有限离线数据集的过分依赖并鼓励有效探索[11] - 该正则化项通过最大化状态分布的香农熵来鼓励策略探索数据集中覆盖不足的状态区域,同时通过最小化在每个层级的社群划分上的结构熵来约束策略不会过度偏离由编码的行为模式,从而减轻分布偏移带来的风险[12] - 最终的训练目标函数将扩散模型的标准损失与这个正则化项结合起来,尤其是在底层的动作生成模型中,以实现探索与利用的平衡[12] 实验结果与分析 - 在D4RL Gym-MuJoCo基准测试中,SIHD在HalfCheetah、Hopper和Walker2D任务上均取得了最优的平均回报,相较于HDMI和HD等先进分层基线表现出更强的泛化能力[16][17] - 在中低质量的"Medium"和"Medium-Replay"数据集上,SIHD的性能优势尤为突出,平均提升分别达到3.8%和3.9%,验证了结构熵正则化器在缓解数据质量依赖方面的有效性[17] - 在奖励稀疏且对长时序规划要求更高的Maze2D和AntMaze任务中,SIHD的优势更加显著,在所有导航任务的数据集上均实现了最佳性能,平均奖励在单任务Maze2D、多任务Maze2D和AntMaze上分别领先8.3%、7.4%和4.4%[19][22] - 在AntMaze-Large数据集上,SIHD的得分为89.4,显著高于次优方法HD的83.6,并展现了卓越的鲁棒性,在数据质量下降时,其性能降幅被控制在17.1%以内,而基线方法最大降幅可达27.4%[22] 消融研究 - 消融研究证实了SIHD各个组件的必要性,尤其是自适应多尺度层级(SIHD-DH),它的缺失会导致最严重的性能下降,特别是在长时序任务中[21] - 研究结果表明,基于结构信息的自适应层级构建、结构信息增益的条件引导以及结构熵正则化探索共同贡献了SIHD框架的卓越性能[21][23]
GUI智能体训练迎来新范式!半在线强化学习让7B模型媲美GPT-4o
量子位· 2025-09-23 19:01
核心观点 - 浙江大学与通义实验室Mobile-Agent团队提出UI-S1框架 采用半在线强化学习训练范式 显著提升GUI智能体在动态多轮任务中的表现 在AndroidWorld任务中达到34.0%成功率 接近GPT-4o的34.5% [1][2][25] - 该方法融合离线训练稳定性与在线学习长程优化能力 通过模拟在线交互过程 在不依赖真实环境交互的前提下提升模型连贯性与推理能力 [2][4][9] - 创新性体现为三大核心技术:半在线机制模拟在线交互 补丁机制修复采样偏差 长程奖励建模捕获轨迹级优势 [10][12][20] 技术架构创新 - 半在线机制在离线数据中保留模型自身原始输出(动作选择与思维链) 使模型感知历史行为并调整后续决策 增强策略一致性与多轮连贯性 [14][15][16] - 补丁机制提供三种可配置策略:Thought-Free Patch仅修正动作 On-Policy Thought Patch引导模型生成正确推理 Off-Policy Thought Patch调用外部模型重写思维链 [17][18] - 长程奖励建模引入折扣因子γ(最优值为0.5) 结合未来步骤潜在价值形成综合奖励 弥补传统离线RL无法捕获未来收益的缺陷 [20][21][43] 性能表现 - 在AndroidWorld任务中UI-S1-7B达到34.0%成功率 较基础模型提升+19.1个百分点 接近GPT-4o(34.5%)且优于UI-TARS-7B(33.0%) [25][27] - 单轮任务保持优势 GUI Odyssey任务较基础模型提升+7.1个百分点 证明未牺牲局部精度 [27][28] - 动态评测指标SOP与真实在线性能高度对齐 支持更高任务多样性和更快评估速度 [23] 机制有效性验证 - 提高补丁阈值显著提升性能:当阈值从0增至8时 AndroidWorld得分从21.0提升至34.5 [31] - On-Policy Thought Patch性能最优但计算开销大 Thought-Free Patch性价比最高且接近最优性能 [32][33] - 较高补丁阈值维持策略熵 避免过早收敛 促进探索多样性 [19][35][36] 数据与扩展性 - 性能增长符合指数型数据规模律 补丁阈值从0增至无穷时指数系数k从-1.13提升至-0.73 表明单位数据边际收益改善 [38][39][40] - 联合使用SFT与半在线RL效果最优 AndroidWorld任务成功率34.0% 分别高于单独使用Semi-online RL(30.4%)和SFT(21.7%) [27][44]
成功率提高57%,VLA+RL最新!CO-RFT:实现VLA模型的高效微调(北航&清华等)
具身智能之心· 2025-08-07 08:03
核心观点 - VLA模型在现实世界机器人控制中展现出巨大潜力 但传统监督微调方法面临样本效率低和泛化能力差的问题[4] - 提出分块强化学习框架(Chunked RL)和CO-RFT算法 通过结合动作分块的离线强化学习显著提升模型性能[8] - CO-RFT采用两阶段训练 先通过模仿学习初始化网络 再用离线RL优化策略 在6个任务中平均成功率提升57% 周期时间减少22 3%[29][30] - 该方法展现出强大位置泛化能力 在未见过的位置上达到44 3%成功率 显著优于传统方法[30] 技术框架 - 分块强化学习框架扩展了时间差分学习 采用自注意力和因果掩码设计 仅需一个网络即可学习所有Q值[13][15] - CO-RFT算法第一阶段通过全参数微调进行模仿学习 第二阶段实施带动作分块的离线RL优化[16] - 采用CalQL作为基础算法 其保守正则化器可防止Q值高估 并解决稀疏奖励问题[16][18] - 模型架构基于RoboVLMs 使用Kosmos2作为VLM主干 并采用TD3算法生成确定性动作[18] 实验结果 - 在6个灵巧操作任务评估中 CO-RFT在4个任务达到近100%成功率 显著优于SFT方法[29] - 抓取消毒剂和取回马克杯等困难任务中 CO-RFT分别实现36%和30%成功率 展示处理复杂场景能力[29] - 数据多样性对性能影响显著 随机初始化数据集训练的模型OOD性能仅下降10-15% 而固定初始化下降55 3%[32][33] - 奖励上采样策略有效缓解稀疏奖励问题 提升价值学习效率[18] 应用价值 - 该方法使用30-60个样本即可有效微调 大幅降低数据需求 提升样本效率[4][29] - 在Realman单臂平台和Inspire灵巧手上验证 展示实际机器人应用潜力[23] - 解决VLA模型在现实场景部署的关键挑战 包括样本效率 训练稳定性和泛化能力[8][30] - 为具身智能领域提供新思路 结合离线RL和动作分块技术突破性能瓶颈[34]