Workflow
纳维 - 斯托克斯正则性问题
icon
搜索文档
陶哲轩罕见长长长长长访谈:数学、AI和给年轻人的建议
量子位· 2025-06-21 11:57
数学与AI的协同关系 - AI正在重塑人类科学范式 在数学和物理的终极问题上 AI将成为人类探索的重要伙伴 但无法取代人类的直觉与创造力 [2] - 复数意义上的人类共同体将创造出最顶尖的超级智能体 比单个数学家更有可能实现数学领域的突破 [3] - 数学的关键在于从几十种可能方法中排除错误答案 而不仅是找到技术路径 [3] 数学研究方法论 - 解决困难问题需采用分阶段策略 类似香港动作片中逐个击破对手的方式 [3] - 数学研究需在结构与随机性之间寻找平衡 大多数生成对象是随机的 仅有少数存在固定模式 [38] - 数学家可通过"策略性作弊"简化问题 即暂时关闭部分困难因素 集中解决核心矛盾 [89] 前沿数学难题 - Kakeya猜想涉及在最小空间内实现物体方向调转 其解与波传播、流体动力学存在深刻联系 [5][6][7][8][9] - 纳维-斯托克斯正则性问题探讨流体运动是否会产生奇点 属于克莱基金会七大千禧年难题之一 [16][17][18] - 塞迈雷迪定理证明在足够大的数字集合中必然存在任意长度等差数列 [41] 数学与物理的差异 - 数学从公理出发关注模型构建 物理由结论驱动注重观测结果 [51] - 物理学依赖观察-理论-建模的互动循环 数学则更侧重理论推导 [52] - 数学允许自由改变规则 这是其他领域无法实现的独特优势 [3] 形式化证明与协作 - Lean编程语言能生成带证明的数学陈述 实现原子级别的协作验证 [94][95][96] - 形式化证明使常数优化效率提升10倍 能快速定位需修改的代码段 [101] - 方程理论项目通过众包完成2200万对代数法则关系验证 展示规模化数学实验潜力 [111][112][113] AI在数学中的应用 - AlphaProof系统通过强化学习解决IMO级别问题 但研究生级问题面临组合爆炸挑战 [121] - 大型语言模型可用于数学引理搜索 在代码补全场景准确率达25% [100] - AI驱动的实验数学可能成为未来研究方向 辅助处理传统暴力计算无法解决的问题 [55]