自动形式化(autoformalization)

搜索文档
陶哲轩18个月没搞定的数学挑战,被这个“AI高斯”三周完成了
36氪· 2025-09-14 13:16
不得了,这个名叫Gauss(高斯)的新AI Agent,有点杀疯了的感觉。 这里的形式化(formalization),指的是把人类写的数学内容转换成一种机器可读、可检查、严密无歧义的形式语言,然后利用计算机帮助验证其正确 性。 而陶哲轩和Alex Kontorovich之所以目前仅取得阶段性进展,问题就卡在了复分析(complex analysis)的核心难题上。 而这个Gauss作为硅基生命,它的特点就是可以不停的工作,极大地压缩了以前只有顶尖形式化专家才能完成的工作量;与此同时,Gauss还形式化了上面 提到的复分析中关键的缺失结果。 这就是为什么它能三周解决陶哲轩18个月都未能完成的数学挑战的原因了。 因为它只用了三周的时间,就完成了陶哲轩和Alex Kontorovich提出的数学挑战—— 在Lean中形式化强素数定理(Prime Number Theorem,PNT)。 要知道,陶哲轩和Kontorovich在2024年1月提出这个挑战后,足足花了18个月(今年7月)的时间,也才取得阶段性的进展。 那么这个Gauss到底是什么来头? 它的背后是一家叫做Math的AI公司,据介绍,Gauss是首个可 ...
啥?陶哲轩18个月没搞定的数学挑战,被这个“AI高斯”三周完成了
量子位· 2025-09-14 13:05
核心观点 - Gauss AI Agent在数学形式化领域取得突破性进展 仅用三周时间完成陶哲轩等人18个月未完成的强素数定理形式化挑战 展现AI在复杂数学验证任务中的巨大潜力 [1][2][8] 技术突破 - 生成约25000行Lean代码 包含上千个定理和定义 此类规模的形式化证明传统需多年完成 [10][11] - 项目规模达历史最大单个形式化项目的十分之一级别(历史最大项目为50万行代码) [12] - 对比Lean标准数学库Mathlib的200万行代码(35万个定理)由600多位贡献者耗时8年完成 Gauss效率显著提升 [13] 基础设施要求 - 与Morph Labs合作开发Trinity环境基础设施 支持数千个并发Agent运行 [14] - 每个Agent需独立Lean运行环境 集群内存消耗达数TB级别 属于复杂系统工程挑战 [14] 发展目标 - 计划未来12个月内将形式化代码总量提升100到1000倍 [16] - 致力于构建"可验证的超级智能"和"通才型机器数学家"新范式 [17] 团队背景 - 母公司Math由Christian Szegedy创立 其为2015年Batch Normalization技术共同发明人 [22][24] - Batch Normalization是深度学习从实验走向大规模实用化的关键技术之一 [26] 行业影响 - AI工具可能改变传统形式化项目中明确目标与隐含目标的实现方式 需重新定义项目目标体系 [18][19] - 陶哲轩指出AI优化算法可能专注于名义目标而忽略隐含目标(如社区建设、知识传承等) [19]