Workflow
自动驾驶算法工程师
icon
搜索文档
学长让我最近多了解些技术栈,不然秋招难度比较大。。。。
自动驾驶之心· 2025-07-10 18:05
自动驾驶行业技术趋势 - 自动驾驶技术快速迭代,算法工程师需掌握BEV、世界模型、扩散模型等复合型技能[2] - 企业招聘偏好复合型人才,要求覆盖传感器标定、数据处理、模型训练到部署全流程[3] - 前沿技术如端到端、VLA、强化学习等岗位需求增加,但量产仍以数据、检测、OCC等基础工作为主[2][3] 知识星球核心资源 - 提供价值千元的入门视频教程,涵盖世界模型、Transformer等前沿技术论文解读[3] - 未来将新增相机标定、多模态融合、大模型等课程,全部免费向会员开放[5] - 社区已吸引华为天才少年等专家加入,形成学术+产品+招聘的闭环生态[5] 四大前沿技术方向资源 视觉大语言模型 - 汇总10+开源项目,包括智能交通LLM应用、AIGC、视觉语言模型综述及提示学习方法[7] - 提供37.6M多语言Wikipedia图文数据集及12B规模的WebLI预训练数据[13] 世界模型 - 收录16项研究成果,如Meta的导航世界模型(NVM)、InfinityDrive泛化模型及DriveWorld 4D场景理解[27][28] - 聚焦视频生成与场景重建技术,如DriveDreamer-2支持定制化驾驶视频生成[28] 扩散模型 - 整合22篇权威综述,覆盖3D视觉、视频编辑、推荐系统等应用领域[30] - 自动驾驶领域应用包括Drive-1-to-3实车合成、MagicDriveDiT长视频生成等9项创新工作[31] 端到端自动驾驶 - 收录50+里程碑方法,如EfficientFuser高效融合框架、nuScenes开环SOTA模型UAD[37][39] - 开源仓库包含Opendilab和Pranav-chib整理的端到端驾驶方法全集[33] 数据集与评估体系 - 预训练数据集规模最大达12B(LAION5B),覆盖108种语言[13] - 自动驾驶专用数据集包括NuScenes(1200类)、Waymo Open Dataset(多任务)等19类[19][20] - 评估指标涵盖mAP(目标检测)、mIoU(语义分割)、Recall(图像检索)等标准化体系[14][17][18] 技术应用场景 智能交通 - 语言引导车辆检索系统采用多粒度检索技术,2023年新增3种统一多模态结构[21] 自动驾驶系统 - 感知模块集成VLPD行人检测、Language-Guided 3D检测等6项创新算法[22] - 规划控制领域应用GPT-Driver轨迹预测、DRIVEVLM多模态融合等5种解决方案[23][24] 行业生态发展 - 社区目标3年内建成万人规模的智能驾驶&具身智能社群[5] - 会员权益包含5000+干货内容、100+场直播回放及求职咨询等7项专属服务[51]