Workflow
行业智算应用
icon
搜索文档
AI时代高品质全光算力专线研究报告
中国信通院· 2025-09-30 20:54
报告行业投资评级 - 报告未明确给出具体的行业投资评级 [2][4][5][6][7][8][9][11][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62][63][64][65][66][67][68][69][70][71][72][73][74][75][76][77][78][79][80][81][82][83][84][85][86][87][88][89][90][91][92][93][94][95][96][97][98][99][100][101][102][103][104][105][106][107][108][109][110][111][112][113][114][115][116][117][118][119][120][121][122] 报告核心观点 - 开源大模型(如Llama、QWen、DeepSeek、ChatGLM)的普及极大降低了AI应用创新门槛和成本,成为驱动行业智算应用发展的核心引擎 [7][14] - 行业智算应用(金融、政务、教育、医疗、公安、文娱、工业及大模型企业)的快速发展对网络连接提出差异化需求,需要OTN专线作为关键承载底座提供大带宽、低时延、高可靠保障 [7][14][15][16] - 面向AI时代,高品质全光算力专线需具备智能感知、业务确定性体验、网络弹性按需、智能运维、光算协同五大特征,以精准匹配智算应用需求 [7][90][91][92][93] - 光网络需实现从“不感知业务类型”到“精准匹配业务需求”的演进,根据业务流量、流向等特征提供实时按需的差异化连接,并为分布式智算协同等场景提供高质量连接保证 [14][15][16] 行业智算应用差异化专线服务需求 金融智算应用 - AI网点助手:带宽需求5Mbps,网络单向时延要求小于5ms,可用率不低于99.99% [22][23][27] - 数字人大堂经理:带宽需求200Mbps,网络单向时延要求小于2.5ms,可用率不低于99.99% [22][23][27] - AI理财双录质检:带宽需求150Mbps,网络单向时延要求小于5ms,可用率不低于99.99% [23][24][27] - AI风控反诈系统:带宽需求5Mbps,网络单向时延要求小于5ms,可用率不低于99.99% [24][25][27] 政务智算应用 - 智能化政务客服:带宽需求小于5Mbps,网络时延控制在500ms内,可用率不低于99.99% [31][33][37] - 智能化交通管理:带宽需求约200Mbps(单个路口),骨干网络带宽需达100Gbps,网络时延小于20ms,可用率不低于99.99% [33][34][37] - 智能化环境管控:带宽需求200Kbps~20Mbps,骨干网络带宽需达10Gbps以上,网络时延要求秒级,可用率不低于99.99% [34][35][37] 教育智算应用 - 智慧课堂:带宽需求100~500Mbps,网络单向时延需控制在10~25ms(AR/VR教学要求小于10ms) [43][44][45] - 教学科研智能化:带宽需求1~10Gbps,网络单向时延小于50ms [43][44][45] - 智能监考:带宽需求约4Gbps,网络单向时延需控制在5ms以内,可用率不低于99.99% [44][45] 医疗智算应用 - AI辅助阅片:带宽需求10Gbps,网络单向时延需小于10ms,可用率不低于99.9% [49][50][53] - AI辅助诊疗:带宽需求500Mbps~1Gbps,网络单向时延需小于5ms,可用率不低于99.9% [49][51][53] - 医联体AI资源共享:带宽需求500Mbps~1Gbps,网络单向时延需小于10ms,可用率不低于99.99% [51][52][53] 公安智算应用 - AI视频监控:带宽需求200Mbps,网络单向时延小于5ms,可用率不低于99.99% [57][58][60] - 警务AI智能体:带宽需求20Mbps,实时场景网络时延小于25ms(非实时可放宽至50ms),可用率不低于99.99% [57][58][60] 文娱智算应用 - 云网吧:带宽需求10Gbps(80台电脑),网络单向时延需小于1ms,可用率需达到99.999% [66][67][72] - 实景三维云渲染:带宽需求1Gbps,网络单向时延需小于1ms,可用率不低于99.99% [67][68][72] - 影视制作:带宽需求5Gbps(日常),可弹性调整至10Gbps,网络单向时延需小于1ms,可用率不低于99.99% [70][71][72] 工业智算应用 - 设计/仿真业务:带宽需求500Mbps~1Gbps,网络单向时延小于2ms,可用率不低于99.99% [77][78][81] - AI智慧工厂:带宽需求小于3Gbps,网络单向时延小于1ms,可用率不低于99.999% [79][80][81] AI大模型智算应用 - 分布式训练(模型拆分):带宽需求100Gbps,网络单向时延不大于10ms,可用率不低于99.99% [86][87][89] - 分布式训练(存算分离):带宽需求约10Gbps,网络单向时延不大于2ms,可用率不低于99.99% [83][86][89] - 分布式推理(模型拆分):带宽需求约10Gbps,网络单向时延不大于2ms,可用率不低于99.99% [84][86][89] - 分布式推理(RAG协同):带宽需求百Mbps级,网络单向时延不大于10ms,可用率不低于99.99% [84][86][89] 高品质算力专线五大特征 智能感知 - 需构筑光缆、网络、业务三层智能感知能力,实现对业务特征识别,匹配光缆资源和光层网络资源,实现差异化保障 [90][92][94] 业务确定性体验 - 根据不同应用提供实时按需的差异化连接,具备波长/ODU/fgOTN/OSU大中小颗粒的转发能力,SLA分级维度从带宽为主升级为时延分级、使用时长分级、传输质量分级、可用率分级、安全分级等 [90][93][103][104] 网络弹性按需 - 管道使用从静态分配到灵活拆建,从以年为周期占用到按小时级、天级分时复用,光网络需具备“波长级敏捷建链能力”以及“弹性带宽调整能力” [90][93][107][109] 智能运维 - 基于AI大模型、智能体、数字孪生等技术,形成网络智能评估规划、意图驱动业务发放和按需调速、主动品质保障和智能故障诊断等全生命周期智能运维能力 [90][93][110][112][113][114][115][116] 光算协同 - 通过物理层、协议层、管控层进行光网络和算力资源协同,实现计算和光网络协同感知,算网统一编排调度,基于业务需求最优算路等能力 [90][93][118][119][121][122] 高品质算力专线关键技术 智能感知关键技术 - 光缆感知:通过升级OTDR能力、引入DAS技术、构建时间/频率/空间模型等,实现光纤质量、同路由风险和外部环境威胁等感知能力 [94][96][97][98] - 网络感知:升级设备感知能力和模型分析能力,精准识别和预测网络特征和状态,包括端口、波长、ODU等带宽资源及SLA信息 [94][99][100] - 业务感知:精准识别和预测业务特征,按照应用需求度量用户体验,基于业务特征进行差异化保障,实现带宽随需调整 [94][100][101] 确定性体验关键技术 - 提供硬管道隔离保障基础带宽,通过fgOTN、OSU、ODUk及波长等不同带宽颗粒度硬隔离管道技术,实现物理隔离传输 [93][102][103] - 基于多维SLA分级提供差异化业务保障,SLA维度包括带宽、时长、传输质量、可用率、安全、时延等,对应提供钻石级、金级、银级、任务式不同等级管道 [93][103][104][105] - 基于SLA的可视、分级保障和调优技术,管控系统提供业务SLA可视化能力,并支持基于SLA的业务调优提升客户应用体验 [93][105][106] 弹性调度关键技术 - 波长级敏捷建链:实现分钟级波长业务自动发放、自动调测、自动释放,包括光电跨层协同算路、光电交叉同步创建、光路参数自动调测 [93][107][108][109] - OSU/fgOTN技术:实现灵活带宽接入及弹性带宽调整,连接数提升到百万级别,满足海量业务差异化带宽需求 [93][109] 智能运维关键技术 - 业务层基于意图实现端到端编排调度,通过自然语言意图模型实现业务需求自动理解,并驱动管控层完成业务配置 [93][110][113][114] - 管控层实现智能评估、业务配置、品质保障和智能故障诊断等智能特性,基于实时网络资源孪生进行网络智能评估,并通过智能路由算法自动推荐备选路由方案 [93][110][113][114][115] - 设备层实现网络多维感知和算力内生,从纤缆、网络、业务三个维度进行感知能力提升,并新增算力单板增强硬件算力 [93][110][116] 光算协同关键技术 - 物理层协同:通过实时感知光链路状态、计算节点资源使用情况,为上层协议和管控提供准确的数据支持 [93][118][119][121] - 协议层协同:通过特定的协议和机制(如DCN和DCI设备协议协同、控制协议扩展等),实现高效光算协同和拥塞控制 [93][118][121][122]