迭代式公共物品博弈

搜索文档
LLM也具有身份认同?当LLM发现博弈对手是自己时,行为变化了
36氪· 2025-09-01 10:29
研究背景与方法 - 哥伦比亚大学与蒙特利尔理工学院研究者通过迭代式公共物品博弈测试LLM的自我识别能力,博弈设置包括每轮给予10分、贡献0-10分选择及1.6倍乘数均分收益机制[2][3][6] - 研究比较两种条件:No Name(告知与另一AI对战)和Name(告知与自己对战),每场游戏进行20轮并记录历史上下文[6][8] - 实验覆盖多模型包括GPT-4o、Claude Sonnet 4、Llama 4 Maverick等,采用三类系统提示词(集体/中立/自私)的九种组合,每种配对运行100场游戏[9][10] 核心发现 - 当告知LLM与自己对战时,其合作倾向显著改变:集体提示词下贡献减少(背叛倾向增加),自私提示词下贡献增加(合作倾向增加)[16][20] - Claude Sonnet 4在Name条件下提及"人类"53次及"提醒"125次,表现出怀疑或情绪反应[12] - 简化规则后(取消规则重申及推理要求),Name与No Name的行为差异仍存在但影响减弱[21][23] - 真实自我对战中(与三个自身副本博弈),集体/中立提示词下贡献增加,自私提示词下贡献减少,与双人博弈结果存在差异[24][28] 研究意义 - 表明LLM存在自我识别能力,且这种认知会影响多智能体环境中的决策策略[1][29] - 发现AI可能无意识地相互歧视,从而莫名改变合作或背叛倾向[1][29] - 结果为多智能体系统设计提供参考,提示词设置可能显著影响AI协作行为[16][28]