多智能体系统
搜索文档
用「传心术」替代「对话」,清华大学联合无问芯穹、港中文等机构提出Cache-to-Cache模型通信新范式
机器之心· 2025-10-29 15:23
文章核心观点 - 清华大学等研究团队提出了一种名为Cache to Cache(C2C)的全新多智能体通信范式,该范式通过直接交换和融合大语言模型的KV-Cache来实现智能体间的“脑对脑”交流,旨在解决传统文本通信(T2T)方式存在的信息丢失、语义模糊和巨大延迟问题 [2] - C2C方法在多个基准测试中展现出显著优势,相比T2T通信实现了3%-5%的正确率提升以及平均两倍的速度提升,为构建高效的多智能体系统提供了新的技术基础 [2][12][29] - 该方法具备良好的泛化能力,未来有望在多智能体协作、多模态融合、推理加速及隐私保护等多个场景中发挥关键作用,推动智能体交流从低效文本中转迈向高效“思想同步” [36][37][38][39] 多智能体系统现有通信方式的局限性 - 当前多智能体系统主要依赖Text to Text(T2T)方式进行信息传递,即通过生成交流文本来实现智能体间的通信 [2][6] - T2T通信方式存在三大核心问题:信息丢失(高维多維语义被压缩到一维文字序列时造成损失)、语义模糊(自然语言本身的模糊性难以通过标准化模版完全解决)以及巨大延迟(需要逐个token生成文本) [2][7][8] - 这些局限性极大地限制了模型间传递丰富语义上下文的效率,尤其是在处理复杂任务和开放协作场景时 [7] C2C通信范式的核心机制与技术细节 - C2C的核心思想是将模型的KV-Cache作为传播媒介,KV-Cache天然包含模型对话过程中的多维语义信息,无需额外二次处理,且在不同模型间具备良好的可转换性与通用性 [2][11] - 该机制的核心组件是C2C-Fuser,其设计采用残差式信息注入结构,包含投影层、动态权重层和可学习门控三部分,旨在自适应地将Sharer模型的信息以残差方式注入Receiver模型,防止破坏Receiver原有语义 [16][17][18] - 为确保不同模型(不同系列、尺寸)间KV表示的兼容性,C2C引入了模型对齐机制,包括Token对齐(通过字符串重新编码实现)和Layer对齐(采用“末端对齐”策略优先保障深层语义融合) [19][26] - 训练过程中,团队冻结Sharer和Receiver的参数,仅训练C2C融合器模块,采用类似SFT的next token prediction损失,确保信息传递的稳定高效 [20] C2C方法的性能与效率优势 - 在准确性方面,C2C相比单智能体表现有显著提升,针对三种不同的Sharer模型,平均准确率分别提升11.00%、9.64%和11.88% [31] - 与T2T通信方式相比,C2C在平均准确率上分别额外提升了5.36%、4.15%和3.06% [31] - 在效率方面,C2C由于省去了中间文本的生成步骤,相比T2T在推理时间上实现了显著加速,加速比分别达到约3.46倍、1.51倍和14.41倍 [29] - 具体实验数据显示,在MMLU-Redux任务中,当Sharer为Qwen2.5-0.5B时,C2C将Receiver的准确率从T2T的41.03%提升至42.92%,同时将响应时间从1.52秒大幅降低至0.40秒 [28] 实验设置与验证 - 训练数据选自通用微调语料库OpenHermes2.5的前50万个样本,以确保C2C Fusers的泛化能力 [22] - 实验涵盖了多种模型组合,包括不同系列(Qwen2.5、Qwen3、Llama3.2、Gemma3)、不同规模(0.6B~14B)以及不同专业领域(通用、代码、数学)的模型 [23] - 基线方法包括T2T通信、query-level routing(根据问题难度动态选择模型回答)以及单模型独立回答,用于全面对比C2C的性能 [24][27][28] - 评测基准包括OpenBookQA(科学常识推理)、MMLU-Redux(多领域专业知识)、ARC-C(复杂科学推理)和C-Eval(中文多学科知识)等多个任务 [28][30] 未来应用前景 - C2C有望在多智能体系统中实现协作效率与效果的大幅提高,进一步提升智能体系统的响应与处理速度 [36] - 该方法可应用于多模态的便捷融合,通过对齐并融合语言模型、视觉-语言模型(VLM)及视觉-语言-动作(VLA)策略的缓存,驱动更精确的理解与决策执行 [36] - 与推理加速方法(如推测解码、token级路由)整合,可进一步降低延迟与推理成本,增强小模型的表现 [37] - 在隐私保护方面,C2C可支持隐私感知的云—边协作,云端模型传输经挑选的KV-Cache段以提升边端能力,减少带宽并降低数据泄露风险 [38] - 与隐空间推理结合后,有望实现完全在高维语义空间的模型推理与沟通协作,减少计算开销 [39]
当AI成为你的新同事:Gartner 2026技术趋势揭示的人机共生未来
搜狐财经· 2025-10-22 07:54
AI角色的根本性进化 - AI正从被动响应指令的工具转变为能够自主决策和行动的智能同事[6] - 多智能体系统将成为企业的数字员工 这些AI智能体能够相互协作共同完成复杂任务[7] - Gartner预测到2028年 将80%客户面向流程自动化的组织将遥遥领先[7] - 物理AI的兴起把智能带入现实世界 例如医疗机器人和自主巡检无人机[7] 领域特定语言模型的崛起 - 企业开始寻求更懂行业更了解业务的专业AI 即领域特定语言模型[8] - Gartner预计到2028年 超过50%的企业生成式AI模型将是领域特定的[9] - 从业者的专业经验成为训练AI的珍贵素材 隐性知识可转化为AI学习素材[9] - 未来最受欢迎的是最懂得如何让AI更专业的人而非最会使用AI的人[9] AI安全与信任技术 - Gartner报告显示到2028年 超过50%的企业将采用专门的AI安全平台[10] - 机密计算技术能在数据处理过程中提供保护 确保敏感信息不泄露[10] - Gartner预测到2029年 75%在不可信基础设施上运行业务的企业将采用机密计算技术[10] - 数字溯源技术让软件组件的来源和经历完全透明可追溯[10] 地缘政治对技术的影响 - 地缘回迁作为全新趋势入选 标志着纯技术决策时代的终结[12] - 越来越多的国家和地区出于安全考虑要求数据和服务留在境内[12] - Gartner预计到2030年 欧洲和中东超过75%的企业将把工作负载回迁到本地区域[12] - 技术的国界正在形成 数字世界划分出新的疆域[12] 企业与个人的应对策略 - Gartner研究显示到2030年 80%的企业将由AI增强的小型团队取代传统大型团队结构[13] - 组织需要投资AI超级计算能力 建立多智能体协作系统并投入AI治理资源[13] - 到2026年 50%的组织将引入AI-free评估来解决批判性思维下降的问题[13] - 最成功的从业者是既精通本专业又能与AI顺畅协作的双语人才[13]
Office Agent:新一代多智能体系统
搜狐财经· 2025-10-15 12:29
近日,微软正式推出 Office Agent —— 一个基于开源技术栈、Anthropic Claude 模型,并采用全新的"TDD-品味驱动开发(Taste-Driven Development)"范式构建的多智能体系统。Office Agent 的目标在于助力用户快速生成高质量内容,涵盖精致的 PowerPoint 演示文稿、可 直接使用的 Word 文档,以及即将推出的动态 Excel 表格。 Office Agent 通过多个专用智能体的协同合作,实现了从规划、撰写到完善的全流程自动化,全方位提升了 Office 内容生产效率。该系统 基于通用型智能体架构,已通过行业领先基准测试 GAIA 认证,性能卓越,在处理复杂工作流时兼具可靠性与精细度。 | Agent | L1 | L2 | г3 | | --- | --- | --- | --- | | Office Agent | 88.7 | 76.7 | 60.0 | | Genspark | 87.8 | 72.7 | 58.8 | | Manus | 86.5 | 70.1 | 57.7 | | OpenAl Deep Research | 74 ...
北大汇丰王小愚:中国AI投资具备三大优势,首要挑战在核心技术依赖与硬件短板
新浪财经· 2025-09-22 10:02
专题:财富领航征程丨金融新启航 中央金融工作会议指出,要做好科技金融、绿色金融、普惠金融、养老金融、数字金融 " 五 篇大文章 " ,为推进金融高质量发展指明了方向。鉴于此,新浪财经年度策划《金融新启 航》特别推出《财富领航征程》系列访谈栏目,深度对话金融机构高管、专家学者,共谋行 业发展之道。 第一,支付清算系统能够实现实时化与可信化。5G提供毫秒级延迟和高速数据传输,支持跨境支付的 实时结算(如传统SWIFT系统需1-3天,而融合技术可将时间压缩至秒级);区块链确保交易不可篡改 和全程可追溯,降低欺诈风险(如香港"贸易联动"平台试点案例);AI通过实时反欺诈模型分析交易行 为,例如支付宝风控系统利用AI降低盗刷率90%以上。5G、人工智能(AI)与区块链的协同能够实 现"速度-安全-智能"的三角闭环,推动支付清算从中心化向分布式高效模式转型。 第二,智能投顾与资产管理更加个性化与透明化。智能投顾的核心,是用数据和算法,代替人工进行资 产配置和投资建议的过程。它依赖AI技术分析用户风险偏好和市场数据生成个性化投资组合。与此同 时,区块链记录所有交易流水,确保策略执行透明可审计。5G保障海量市场数据的实时传输 ...
马斯克“巨硬计划”新动作曝光!从0建起算力集群,6个月完成OpenAI&甲骨文15个月的工作
搜狐财经· 2025-09-18 14:34
项目进展 - 6个月建成算力集群 已完成200MW供电规模 支持11万台英伟达GB200 GPU NVL72 [1] - 项目进度远超行业标准 6个月完成OpenAI和甲骨文等合作方15个月的工作量 [1] - 2025年3月7日启动Colossus II项目 收购100万平方英尺仓库及100英亩地块 [4] - 截至8月22日安装119台风冷式冷水机组 提供200MW冷却能力 [4] - 第一阶段部署11万个GPU 最终目标超过55万个GPU 峰值功率需求超1.1吉瓦 [4] - 部署168个特斯拉Megapack电池储能系统 避免对当地电网造成冲击 [5] 技术架构 - 基于xAI大型语言模型Grok构建多智能体系统 部署数百个专用智能体 [2] - 智能体分工涵盖编码 图像视频生成 软件测试等全流程 [2] - 系统通过虚拟机模拟人类用户交互 实现软件开发生命周期全自动化 [2] - 采用跨区域能源策略 在密西西比州收购前杜克能源发电厂 [4] - 发电厂已运行7台35MW燃气涡轮机 总输出245MW [4] - 通过合资公司获得400MW燃气涡轮机服务 占供应商总容量600MW的67% [5] 战略布局 - 项目命名为"巨硬计划"(MACROHARD) 2021年已有初步构想 [2] - Colossus II专为AI推理设计 规模较Colossus I扩大数十倍 [4] - 与特斯拉形成协同效应 AI软件优化自动驾驶算法及工厂自动化 [6] - 特斯拉提供海量真实世界训练数据 公司定位转向"AI机器人公司" [6] - 长远路线图计划将GPU总量扩展至100万个 [4] 资源投入 - 合资公司第二季度资本支出1.12亿美元 [5] - 密西西比州监管机构特批12个月燃气轮机运行许可 无需正式审批 [4] - 马斯克亲自督导项目 包括电力生产审查和技术评审 [5]
张小珺对话OpenAI姚顺雨:生成新世界的系统
Founder Park· 2025-09-15 13:59
文章核心观点 - 语言是人类实现泛化的核心工具,是构建通用人工智能系统的最本质要素 [4][7][77] - AI Agent发展已进入下半场,重点从模型训练转向任务定义和环境设计 [5][62][63] - 创业公司最大机会在于设计新型人机交互界面,而非重复ChatGPT模式 [110][112][113] - 未来AI生态将呈现既单极又多元格局,由不同超级应用共同定义智能边界 [5][146][154] 姚顺雨背景与研究历程 - 清华姚班本科、普林斯顿博士,2019-2024年在普林斯顿攻读博士学位 [13] - 2016年接触多模态嵌入技术后转向深度学习,2018年系统性开始深度学习研究 [14][15] - 博士期间从计算机视觉转向语言模型研究,因认为语言是实现AGI的更核心方向 [15] - 专注Language Agent研究6年,2024年加入OpenAI [4][19] AI Agent技术演进 - 技术发展三阶段:符号主义AI(规则系统)→深度强化学习(环境特定)→大语言模型(泛化推理)[40][41][43] - 语言智能体与传统Agent本质区别在于具备推理能力从而实现泛化 [36][38][39] - ReAct框架成为最通用方案,实现推理与行动的协同 [26][50] - 代码环境是数字智能体最重要的"手",提供天然机器表达形式 [53][54][55] 任务与环境设计 - 当前瓶颈从方法创新转向任务定义和环境设计 [62][63] - 优秀任务需具备:结果导向奖励机制、基于规则的白盒评估、可解释性 [64][66][71] - 任务分类标准:可靠性需求型(如客服)vs创造力需求型(如证明猜想)[70][72] - 评估指标需区分Pass@k(多次尝试成功率)和Pass^k(每次成功率)[74] 产业发展与创业机会 - 模型能力溢出为创业公司创造机会,关键在于设计新型交互界面 [110][112] - 成功案例包括Cursor(编程副驾驶)、Manus(通用交互)、Perplexity(研究型搜索)[117][127][129] - 数据飞轮形成需三个条件:自主训练能力、清晰奖励信号、数据好坏分离 [123][124] - 成本不是核心瓶颈,真正关键在于找到价值超过成本的应用场景 [139][141] 未来生态展望 - OpenAI五级能力划分:聊天机器人→推理者→智能体→创新者→组织者 [44][45] - 未来12-24个月趋势:Chatbot系统自然演进为Agent系统,新型Copilot应用涌现 [165][166] - 记忆系统(Memory)将成为核心竞争壁垒,特别是上下文管理能力 [51][158][159] - 最终生态将由多个超级应用共同定义,呈现中心化与分布式并存格局 [146][152][154]
DeepDiver-V2来了,华为最新开源原生多智能体系统,“团战”深度研究效果惊人
量子位· 2025-09-11 18:19
产品发布与核心特性 - 华为发布DeepDiver-V2原生多智能体系统 采用团队作战模式 包括一个Planner负责任务分解和进度管理 多个专业Executor并行处理子任务 通过共享文件系统交换信息 [1] - 系统基于多智能体形态训练 具备更强的角色扮演和协同推理能力 能够生成数万字的高质量深度研究报告 [2] - 该系统专攻AI深度搜索和长文调研报告生成 目前已开源 [3] 性能表现与基准测试 - 在WebPuzzle-Writing基准测试中 DeepDiver-V2生成报告平均长度达24.6K tokens 是OpenAI o3 DeepResearch(10.6K tokens)的两倍多 [4] - DeepDiver-V2-38B在BrowseComp-zh测试中达到34.6分 超越WebSailor-72B(30.1分)和WebSailor-32B(25.5分) [5] - DeepDiver-V2-38B在BrowseComp-en测试中达到13.4分 为同规模开源模型中最高 超过WebSailor-72B(12.0分) [5] - 在自动评测中 DeepDiver-V2效果与主流agent产品相当 Content Diversity指标表现优异 [4] 系统架构创新 - 采用以Planner为中心的多智能体系统架构 协调多个Executor 取代V1版本的单模型超长上下文处理模式 [7] - Planner进行自适应复杂度评估 构建任务树分解复杂问题 并采用竞争赛马机制提高结果可靠性 [8][9] - 智能体通过共享文件系统交换精炼任务摘要和文件元数据 而非完整上下文 实现可扩展通信和并行执行 [11] - 系统包含专业化Executor:Information Seeker负责信息收集与验证 Writer负责长文本生成与章节构建 [12] 训练方法与技术支撑 - 采用Planner-centric分配机制解决多智能体训练中的责任归属问题 [13] - 训练流程包括冷启动监督微调 拒绝采样微调(RFT)和在线RFT 使用动态轨迹缓存批处理策略 [15][16] - 训练完全使用Atlas 800I A2集群 依托1000+ NPU组成的大规模计算集群 通过华为高速缓存一致性系统(HCCS)互联 [17] - 开发专门强化学习框架 包括Agent Factory代码库和Trajectory-wise过滤机制 [17][18] 实验发现与性能分析 - 系统性能对Executor能力极其敏感 但对Planner要求相对宽松 7B Planner已能胜任大部分协调工作 [19][21] - 38B Information Seeker单独使用时在BrowseComp-zh得分26.3 超越WebSailor-32B(25.5分) [23] - 将7B Executor升级为38B后 BrowseComp-zh分数增加9分(18.3→27.3) 而升级Planner仅提升6.3分(18.3→24.6) [25] - 在长文本写作任务中 升级Writer带来的提升(5.51→5.80)远超升级Planner(5.51→5.56) [25] - 多智能体训练使子智能体在处理扩展任务集时更加鲁棒 具备独当一面的能力 [26] 应用前景与行业影响 - 从单一模型到多智能体系统的转变为解决复杂现实问题开辟道路 [27] - 未来将在企业调研 科学文献综述 专业数据分析等专业领域发挥巨大作用 [27]
A2A、MCP、Gemini……谷歌技术专家手把手教你搭建 AI Agent
Founder Park· 2025-09-02 18:21
活动主题 - Google Cloud AI专家分享AI智能体构建技巧 重点关注ADK A2A MCP和Agent Engine技术框架的应用[2] - 探讨如何利用Google最新AI技术打造协作性强 高效 可扩展的多智能体系统[2][6] - 探索智能体开发未来趋势 分析智能体对人机交互范式的重塑潜力[2][6] 目标受众 - AI初创企业及出海企业的业务负责人与技术负责人[6] - AI产品经理 解决方案架构师及AI工程师群体[6] - 开发者群体 活动需经审核且名额有限[3][6] 行业动态参考 - Intercom采用Founder Mode实现300%增长 体现按结果付费模式在AI转型中的成功应用[8] - 红杉美国重点关注五大AI赛道 反映资本对特定AI领域的战略布局[8] - a16z全球AI产品Top100显示DeepSeek增长放缓 中国开发者出海全球化成为新趋势[8]
LLM也具有身份认同?当LLM发现博弈对手是自己时,行为变化了
36氪· 2025-09-01 10:29
研究背景与方法 - 哥伦比亚大学与蒙特利尔理工学院研究者通过迭代式公共物品博弈测试LLM的自我识别能力,博弈设置包括每轮给予10分、贡献0-10分选择及1.6倍乘数均分收益机制[2][3][6] - 研究比较两种条件:No Name(告知与另一AI对战)和Name(告知与自己对战),每场游戏进行20轮并记录历史上下文[6][8] - 实验覆盖多模型包括GPT-4o、Claude Sonnet 4、Llama 4 Maverick等,采用三类系统提示词(集体/中立/自私)的九种组合,每种配对运行100场游戏[9][10] 核心发现 - 当告知LLM与自己对战时,其合作倾向显著改变:集体提示词下贡献减少(背叛倾向增加),自私提示词下贡献增加(合作倾向增加)[16][20] - Claude Sonnet 4在Name条件下提及"人类"53次及"提醒"125次,表现出怀疑或情绪反应[12] - 简化规则后(取消规则重申及推理要求),Name与No Name的行为差异仍存在但影响减弱[21][23] - 真实自我对战中(与三个自身副本博弈),集体/中立提示词下贡献增加,自私提示词下贡献减少,与双人博弈结果存在差异[24][28] 研究意义 - 表明LLM存在自我识别能力,且这种认知会影响多智能体环境中的决策策略[1][29] - 发现AI可能无意识地相互歧视,从而莫名改变合作或背叛倾向[1][29] - 结果为多智能体系统设计提供参考,提示词设置可能显著影响AI协作行为[16][28]
如何借助 ADK、A2A、MCP 和 Agent Engine 构建智能体?
Founder Park· 2025-08-27 19:41
活动概述 - Founder Park联合Google Cloud举办线上分享活动 特邀AI专家史洁探讨AI智能体开发技术[2][3] - 活动时间为9月4日20-21点 采用审核制报名方式 面向特定专业受众群体[4][8] 技术框架 - 重点介绍ADK A2A MCP和Agent Engine四大技术框架在构建AI智能体中的应用方案[3][8] - 探讨如何利用Google最新AI技术构建具备协作性 高效性和可扩展性的多智能体系统[3][8] 行业影响 - 深入分析智能体开发未来趋势 预判智能体技术将重塑人机交互范式[3][8] - 活动面向AI初创企业 出海企业技术负责人 AI产品经理及工程师等专业群体[8] 延伸资源 - 公众号提供AI创业相关延伸阅读 包括增长策略 平台红利把握及产品评估等主题[9]