适配体
搜索文档
Nature系列综述:谭蔚泓院士解读改写医学未来的功能性核酸——适配体、脱氧核酶
生物世界· 2025-12-01 08:08
文章核心观点 - 功能性核酸(FNA)通过单链核酸的自我折叠形成特定三维结构,从而获得识别、催化等超越遗传信息载体的生物功能,是推进分子生物学和精准医学的变革性工具[1][2][3] - FNA主要包括适配体(Aptamer)和脱氧核酶(DNAzyme),具有高特异性、可编程性和结构多样性,在靶向治疗、精准诊断等生物医学应用方面前景广阔[3][7][8] - 通过理性设计、化学修饰等工程策略可优化FNA的稳定性、亲和力和催化效率,目前已有两款适配体药物获批上市,多个FNA候选药物处于不同临床试验阶段[9][10][18] 功能性核酸(FNA)的定义与特性 - FNA是结构明确的单链DNA或RNA,通过内部沃森-克里克碱基配对形成发夹、茎环等二级结构,并进一步折叠成具有特定结合口袋或催化位点的三维构象[6] - 与传统小分子或蛋白质不同,FNA具有线性可编程性,其功能和结构由核苷酸精确序列决定,便于人工合成及整合化学修饰或人工碱基[7] - FNA具备特异性、可编程性和结构多样性,适配体可高特异性结合预定目标,脱氧核酶可催化RNA/DNA切割等生化反应,打破只有蛋白质和RNA有催化功能的传统认知[7][8] 功能性核酸的生物医学应用 - 在治疗应用上,适配体可直接作为激动剂/拮抗剂调节受体功能,或作为智能载体实现药物、纳米颗粒的靶向递送;脱氧核酶通过RNA切割活性实现基因特异性调控[8] - 在诊断应用上,适配体凭借高亲和力成为疾病生物标志物检测、体外诊断和体内成像的理想工具;脱氧核酶则用于金属离子、核酸生物标志物等检测[8] - 融合AI分子设计、智能纳米技术等跨学科技术,FNA在个性化医疗、智能药物递送、精准基因编辑和超灵敏诊断等方面具有巨大潜在应用前景[8] FNA的工程策略与临床进展 - FNA的工程策略包括结构优化(如截断、多价化、环化)、碱基修饰、糖环修饰(如2'-氟、2'-O-甲基、LNA)、磷酸骨架修饰(如硫代磷酸酯)和末端修饰(如3'-倒置dT、5'-PEG化),以增强其核酸酶抗性、结合亲和力和催化活性[16][17] - 目前已有两款适配体药物获批:Macugen(2004年获批,治疗湿性年龄相关性黄斑变性)和Izervay(2023年获批,治疗年龄相关性黄斑变性继发地图样萎缩)[10][18] - 临床试验管线丰富,涉及多种疾病领域:例如E10030(靶向PDGF,治疗年龄相关性黄斑变性,Phase III)、REG1(靶向Factor IXa,治疗急性冠脉综合征,Phase III)、SB010(DNAzyme,靶向GATA3,治疗过敏性哮喘,Phase II)等[18]