Workflow
长视频理解
icon
搜索文档
ICML 2025 Oral工作再升级!上海AI Lab联合复旦、港中文推出支持更长视频理解的最佳工具VideoRoPE++
机器之心· 2025-07-03 11:26
背景介绍 - 旋转位置编码(RoPE)及其变体在长上下文处理中广泛应用,但扩展到具有复杂时空结构的视频领域仍存在挑战[3] - VideoRoPE++通过全面分析确定了将RoPE有效应用于视频所需的五个关键特性,这些特性在先前工作中未被充分考虑[4] - 构建了全新评测基准V-RULER,其中子任务"带干扰项的大海捞针"显示当前RoPE变体在缺乏合理时间维度建模策略时容易被周期性干扰项误导[5] VideoRoPE++设计特点 - 采用三维结构保留时空关系,包括低频时间分配减轻周期性碰撞、对角布局保持空间对称性、可调整时间间隔解耦时间和空间索引[6] - 提出外推方案YaRN-V,仅在低频时间轴插值并保持空间维度稳定性,实现长视频场景下的结构一致性与外推鲁棒性[7] - 通过低频时间分配(LTA)减少振荡确保鲁棒性,对角布局(DL)保持空间对称性,可调时间间隔(ATS)控制时间间隔[15] 技术对比与优势 - 原始1D RoPE未包含空间建模,M-RoPE采用3D结构但引入不同帧间视觉标记索引差异,VideoRoPE++实现平衡并保留原始RoPE一致的索引增长模式[23] - 在视频理解任务中,空间信息具有局部性和周期性,时间信息跨越更长范围,YaRN-V通过仅沿时间维度频率插值解决这一不对称性[26] - 与M-RoPE相比,VideoRoPE++在检索中更具鲁棒性且不易受干扰项影响[9] 实验结果 长视频检索 - VideoRoPE++在V-RULER上始终优于其他RoPE变体,Vanilla RoPE和TAD-RoPE在视觉训练上下文外具备一定外推能力但超出极限后失效[28] 长视频理解 - 在LongVideoBench、MLVU和Video-MME基准上,VideoRoPE++(Qwen2基座)在64k上下文长度下分别比M-RoPE提高2.91、4.46和1.66分[30] - 性能对比表格显示VideoRoPE++在不同上下文长度和基座模型上均优于基线方法[31] 外推任务 - 在V-RULER基准的Lengthy Multimodal Stack任务上,YaRN-V以81.33分显著领先,较最强基线YaRN提升13.0分[32] - YaRN-V能更好支撑视频大模型在长输入场景下的时间对齐,避免位置溢出带来的性能衰退[33] 总结 - 确定了有效位置编码的四个关键标准:2D/3D结构、频率分配、空间对称性和时间索引缩放[34] - VideoRoPE++在长视频检索、视频理解和视频幻觉任务中优于其他RoPE变体[34]
CVPR 2025 Highlight|AdaCM2:首个面向超长视频理解的跨模态自适应记忆压缩框架
机器之心· 2025-06-09 12:33
本文第一作者为前 阿里巴巴达摩院高级技术专家 ,现一年级博士研究生满远斌,研究方向为高效多模态大模型推理和生成系统。通信作者为第一作者的导 师,UTA 计算机系助理教授尹淼。尹淼博士目前带领 7 人的研究团队,主要研究方向为多模态空间智能系统,致力于通过软件和系统的联合优化设计实现 空间人工智能的落地。 近年来,大语言模型(LLM)持续刷新着多模态理解的边界。当语言模型具备了「看视频」的能力,视频问答、视频摘要和字幕生成等任务正逐步迈入真正 的智能阶段。但一个现实难题亟待解决—— 如何高效理解超长视频? 为此,来自得克萨斯大学阿灵顿分校(UTA)计算机系研究团队提出了 AdaCM2 :首个支持 超长视频理解 的跨模态记忆压缩框架。该研究已被 CVPR 2025 正式接收 ,并荣获 Highlight 论文 (接收率为 3%),展示出其在技术创新与实际价值上的双重突破。 论文标题:AdaCM2: On Understanding Extremely Long-Term Video with Adaptive Cross-Modality Memory Reduction 论文地址:https://arxiv.o ...
单卡搞定万帧视频理解!智源研究院开源轻量级超长视频理解模型Video-XL-2
量子位· 2025-06-04 13:21
国产开源模型又上大分,这次是在长视频理解领域: 智源研究院联合上海交通大学等机构,正式发布新一代超长视频理解模型 Video-XL-2 。 长视频理解是多模态大模型关键能力之一。尽管OpenAI GPT-4o、Google Gemini等私有模型已在该领域取得显著进展,当前的开源模型在 效果、计算开销和运行效率等方面仍存在明显短板。 而Video-XL-2相较于上一版本的Video-XL,在多个维度全面优化了开源多模态大模型对长视频内容的理解能力: 目前,Video-XL-2的模型权重已全面向社区开放。未来,该模型有望在影视内容分析、异常行为监测等多个实际场景中展现重要应用价值。 允中 发自 凹非寺 量子位 | 公众号 QbitAI 单张显卡,就能处理万帧视频输入,并且编码2048帧视频仅需12秒! 技术简介 在模型架构设计上,Video-XL-2主要由三个核心组件构成: 视觉编码器(Visual Encoder) 、 动态 Token 合成模块(Dynamic Token Synthesis, DTS) 以及 大语言模型(LLM) 。 △ Video-XL-2的模型架构示意图 具体而言,Video-XL-2 ...
万帧?单卡!智源研究院开源轻量级超长视频理解模型Video-XL-2
机器之心· 2025-06-03 12:06
机器之心发布 机器之心编辑部 长视频理解是多模态大模型关键能力之一。尽管 OpenAI GPT-4o、Google Gemini 等私有模型已在该领域取得显著进展,当前的开源模型在效果、计算 开销和运行效率等方面仍存在明显短板。 近日,智源研究院联合上海交通大学等机构,正式发布新一代超长视频理解模型:Video-XL-2。相较于上一版本的 Video-XL,该模型在多个维度全面优 化了多模态大模型对长视频内容的理解能力: 目前,Video-XL-2 的模型权重已全面向社区开放。未来,该模型有望在影视内容分析、异常行为监测等多个实际场景中展现重要应用价值。 技术简介 图 1:Video-XL-2 的模型架构示意图 图 3. Chunk-based Prefilling 效果更佳:Video-XL-2 在长视频理解任务中表现出色,在 MLVU、Video-MME、LVBench 等主流评测基准上达到了同参数规模开源模型的领先 水平。 长度更长:新模型显著扩展了可处理视频的时长,支持在单张显卡上高效处理长达万帧的视频输入。 速度更快:Video-XL-2 大幅提升了处理效率,编码 2048 帧视频仅需 12 秒,显 ...
长视频理解新突破!Mamba混合架构让显存消耗腰斩,处理10万视频token不费力
量子位· 2025-03-27 12:16
Vamba团队 投稿 量子位 | 公众号 QbitAI Mamba混合架构视频模型来了,不再对视频token进行压缩—— 而是通过改进模型架构设计的方式提升模型在训练及推理预填充阶段处理视频token的效率。 滑铁卢大学陈文虎团队与多伦多大学、零一万物、向量学院以及M-A-P的研究人员提出了一种新的Mamba-Transformer混合模型Vamba。 通过大量实验验证,研究团队发现Vamba在同等硬件条件下可处理的视频帧数较传统Transformer架构提升4倍,训练内存消耗降低50%以 上,并且可实现单步训练速度的翻倍。 同时,该方法完整保留了原始视频的时空特征,避免传统方法因降采样或池化操作导致的关键动作或场景的信息丢失。 在多个长视频的评价标准上,Vamba保持了高准确率和出色的性能,尤其在LVBench长视频理解基准上相较先前的高效长视频理解模型达到 了约4.3%的性能提升。团队现已开源Vamba模型的代码、模型权重以及训练、推理脚本供研究社区进一步探索与应用。 核心方法 目前流行的多模态大语言模型多使用Transformer作为模型的基本结构,其中的因果注意力机制相对于输入的token序列长度存在 ...