Prompt工程
搜索文档
火爆全网的Skills,终于有了最简单的打开方式。
数字生命卡兹克· 2026-01-20 10:18
扣子2.0版本核心更新 - 产品更新至2.0版本,并更换了logo [1] - 本次更新引入了两个被作者认为非常实用且及时的核心功能:Skills(技能)和长期计划 [4] Skills(技能)功能详解 - Skills被视为继2024年Prompt工程、2025年上下文工程之后,2026年可能兴起的“Skills工程” [4] - 此前Skills功能主要集成在如OpenCode、CodeX、Antigravity等编程工具中,对普通用户门槛较高 [4] - 扣子作为一款Agent产品,集成Skills功能顺理成章,大幅降低了普通用户使用和创建Skills的门槛 [4] - 用户可通过在对话框输入“@”键来调用已拥有的技能 [4] - 官方内置了大量开箱即用的技能,涵盖写作、制作PPT、设计、视频处理等领域 [6] - 用户也可以使用他人创建并上架到技能商店的技能 [7] Skills的创建与抽象化价值 - 作者强调,未来个人的核心竞争力在于能否将重复性需求抽象成Skills并集成到主Agent中 [7] - 任何需要重复3次及以上的非沟通类任务,都应该被Skill化 [7] - 扣子平台的核心价值之一是帮助用户以极低成本将个人经验Skill化 [7] - 平台提供了两种创建技能的方式,分别面向普通用户和专业用户 [7] 面向普通用户的“口喷式”Skills开发 - 这是扣子上主流的技能构建方式,用户通过自然语言描述即可创建技能 [8] - 例如,用户可以将著名的开源多媒体处理工具FFmpeg的GitHub链接发给AI,要求其打包成一个用于视频格式转换、分辨率修改等功能的Skill [9][10][13] - 构建过程约需一两分钟,部署后即可在对话中调用 [14][15][19] - 实际测试中,调用该技能将一段视频转换为小于10MB的GIF,耗时仅几十秒,效果符合要求 [21][23] - 用户还可以将多个相关开源项目(如FFmpeg和ImageMagick)合并,创建一个能同时处理视频和图片的复合型Skill [24][25][27] - 此类复合技能可处理复杂连续任务,例如按要求将图片转为指定格式并调整视频分辨率,全程自动化处理仅需约2分钟 [29] - 创建好的技能可以上架到技能商店供所有用户使用 [30][32] 面向专业用户的Skills迁移 - 对于已通过Claude Code或OpenCode等工具创建了大量Skills的专业用户,扣子支持直接上传技能文件包(.zip或.skill格式)进行迁移 [33] - 系统会自动识别并创建技能,实现从其他平台到扣子的无缝平移 [33][37] - 目前部分迁移技能的运行成功率尚有优化空间 [38] Skills功能的当前局限与展望 - 目前扣子2.0上的技能只能单独使用,尚不支持多个Skill之间的互相结合与调用,这在一定程度上限制了其能力 [40] - 该更新对于降低Skills使用门槛、推动其普及具有重要作用 [39] - 补齐技能联动等关键短板后,AI助手的能力将得到质的飞跃 [58][60] 长期计划功能详解 - 长期计划功能允许用户为AI设定一个长期目标,AI会将其分解为可执行的步骤,用户只需按计划执行 [42][43] - 例如,用户可以创建一个“2026年全年健康执行路径规划”,AI会先了解用户当前身体状况,然后生成详细的阶段性规划书 [50][54] - 规划书内容系统,包含整体目标、阶段划分、关键里程碑和量化追踪指标体系等 [54] - AI会自动将计划任务添加到日程中,并在设定时间通过网页端弹窗提醒用户 [55] - 在计划执行过程中,用户可以通过与AI对话来不断调整和优化计划 [55] 长期计划功能的当前局限 - 目前计划提醒仅支持网页端,扣子的APP端尚未支持该功能的通知 [55] - 在移动端使用长期计划被认为是刚需,预计APP端支持会很快更新 [57]
RAG系统设计:揭秘语义搜索被低估的核心价值与KG驱动的架构选型策略
AI前线· 2025-05-14 13:47
RAG系统与语义搜索 - RAG系统通过检索增强生成解决LLM的局限性,包括训练成本高和幻觉问题[5] - 语义搜索在RAG系统中被严重低估,其核心是将文件映射到高维测度空间实现语义匹配[10] - 语义搜索允许直接将文件作为索引,通过embedding形式与查询对比,具有处理低资源文件和长文件的灵活性[11][12] 系统设计与损失函数 - 工程是取舍的艺术,需要明确能够接受的权衡和牺牲[19] - Contrastive Loss形成多个相距m距离的紧密聚类,适用于结构紧密、方差较小的数据[21] - Triplet Loss适用于类内方差较大的数据,如同一个人在不同光照条件下的人脸图像[26][27] 距离函数与嵌入模型 - 余弦距离不符合度量空间定义但计算简单,适合推荐系统等只关注方向的场景[29][30] - 欧几里得距离适合复杂场景如电商推荐,但可能出现数值溢出和高维数据稀疏问题[35][36] - 嵌入模型选择优先级:性能/成本权衡 > 数据领域 > 损失函数 > 距离度量[42][43] 向量数据库与索引 - 向量数据库选择需考虑开源/闭源、实现语言和部署方式[45][48] - 索引方式包括哈希、树、图和倒排索引,图索引适用于大多数高维数据场景[50] - 系统设计重点是为语义搜索提供数据结构,如分层结构或Context Enrichment[53][56] KG-RAG与未来趋势 - KG-RAG能清晰描述实体关系但成本高,Lazy Graph RAG通过结合语义搜索降低成本[72][73] - 大模型正向端设备迁移,需要更快的RAG实现以适应有限资源[79] - 机器学习系统设计最佳实践是优先使用传统方法如SQL或正则表达式[81]