Workflow
robot foundation model
icon
搜索文档
Physical Intelligence 创始人:人形机器人被高估了
海外独角兽· 2025-03-28 19:51
文章核心观点 - 通用机器人是AGI从数字世界走向物理世界的重要路径,robot foundation model旨在为机器人构建大脑以实现通用能力 [3] - Physical Intelligence(PI)被视为机器人领域的OpenAI,专注于开发通用机器人的foundation model,近期开源了通用模型π0并推出分层推理系统Hi Robot [3][10][26] - 实现机器人泛化的核心在于获取多样化数据而非仅追求数据质量,需扩大真实机器人数据规模并优化跨平台数据共享 [12][17][18] - 人形机器人形态当前被高估,未来机器人形态将呈现多样化"寒武纪大爆发",物理智能才是AGI核心 [4][22][36] Chelsea Finn机器研究的开端 - 研究始于10年前伯克利博士阶段,早期探索神经网络控制将图像像素直接映射到机器人扭矩,当时属非主流方向 [6] - 关键挑战在于让机器人在不同环境/物体间泛化任务能力,如拧瓶盖、挂衣架等基础操作 [6] - 研究路径涉及构建广泛数据集,结合强化学习、模仿学习等方法,曾在Google Brain工作并创立斯坦福实验室 [7] PI的研究进展和发展 - 目标构建可控制任何机器人执行任何任务的神经网络模型,突破传统单一任务优化局限 [10] - 采用跨平台数据整合策略(六轴/七轴/单双臂机器人),最大化数据复用价值以解决硬件迭代导致的数据废弃痛点 [10][12] - 2023年10月展示复杂任务能力(叠衣/清理/纸箱搭建),当前重点扩展语言交互与环境泛化能力 [13][15] - 技术架构依托Transformer和预训练Vision-Language Model,利用互联网知识迁移(如Taylor Swift案例) [15][16] 机器人实现AGI的路径 - 短期难预测具体应用场景,需探索人机协作模式降低容错要求,语言交互是重要突破方向 [21] - 运动控制蕴含进化级智能,基础操作(倒水/做麦片)实际具有极高复杂性 [23] - 关键里程碑研究:SayCan(语言模型规划)、RG2(网页数据集成)、RT-X(跨机器人形态训练)、Aloha(远程操作训练) [24] Hi Robot系统设计 - 分层推理架构:高层模型处理任务规划(如"拿起番茄"),低层模型转换为具体动作指令 [26] - 解决长周期任务执行与实时交互需求,已实现三明治制作/购物/清理等场景 [28] 传感器与硬件发展 - 当前依赖视觉(RGB摄像头)已取得显著进展,手腕摄像头可部分替代触觉传感器 [29] - 嗅觉/味觉等冗余传感器虽有益但非优先级,当前瓶颈在于数据处理与记忆功能开发 [30] - 未来硬件将趋向场景专用化(厨房/折叠衣物等),形成多形态共存的生态系统 [36][37] 自动驾驶与机器人领域对比 - 机器人操作空间维度更高(14维vs自动驾驶2D),精度要求更严但分布问题范围较小 [31] - 初创公司优势在于快速迭代部署,大公司受限于安全规范难以实现多样化数据收集 [34] 训练数据方法论 - 人类观察数据(如YouTube)价值有限,机器人需从自身物理经验中学习运动控制 [35] - 数据泛化能力取决于分布广度,通过建筑物/场景数量等指标粗略评估 [36] - 自动化经验与强化学习结合是提升数据价值的关键路径 [35]