FLUX系列模型

搜索文档
ICCV 2025|降低扩散模型中的时空冗余,上交大EEdit实现免训练图像编辑加速
机器之心· 2025-07-05 10:46
核心观点 - 上海交通大学EPIC Lab团队提出了一种无需训练的高效缓存加速编辑框架EEdit,用于加速基于流匹配扩散模型的图像编辑任务 [6][7] - EEdit通过反演过程特征复用和区域分数奖励控制区域标记计算频率,解决了图像编辑中的时空冗余性问题 [9] - 该框架支持多种输入类型引导的编辑任务,包括参考图像引导、提示词引导和拖拽区域引导 [10] - 相比于未加速版本,EEdit实现了2.4倍推理速度提升,最快可达10倍加速 [8] 研究动机 - 基于扩散模型的图像编辑存在时间步数量多、反演过程开销大、非编辑区域计算浪费等问题 [6] - 在将猫编辑为虎的案例中发现非编辑区域存在高空间冗余,反演过程存在高时间冗余 [14] - 当前学界对图像编辑任务中时空冗余性带来的计算开销问题研究较少,是一片蓝海 [6] 方法简介 - EEdit采用输出特征复用方式压缩反演过程时间步,使用区域分数奖励控制区域标记更新频率 [7] - 设计了空间局域缓存算法(SLoC),利用编辑区域掩码作为空间知识先验来针对性更新feature tokens [20] - SLoC算法包括分数图初始化、区域分数奖励、feature tokens选择和递增补偿等步骤 [21][22][23] - 采用缓存索引预处理(TIP)技巧,将缓存更新逻辑转为离线预处理算法 [24] 实验结果 - 在FLUX-dev开源权重上进行实验,覆盖PIE-bench等四个数据集 [26] - 定量评估显示SLoC+ISS方案在PSNR(31.97)、LPIPS(1.96)、SSIM(0.94)等指标上最优 [27] - 计算开销(264.5T FLOPs)和推理时间(4.60s)显著优于其他方法 [27] - 定性实验显示EEdit在编辑区域精确度和背景一致性上表现优越 [28] - 与其他缓存算法相比,SLoC在前景保持度上效果提高50%以上 [29]