Impromptu VLA

搜索文档
重磅直播!清华&博世开源SOTA性能纯血VLA:Impromptu-VLA告别双系统~
自动驾驶之心· 2025-07-01 20:58
自动驾驶技术进展 - 当前自动驾驶系统在结构化环境(如城市和高速公路)中取得显著进展,但在非结构化场景(如乡村小路、临时施工区、恶劣路况)中仍面临鲁棒性和安全性挑战 [1] - 现有大规模自动驾驶数据集主要关注常规交通状况,缺乏针对非结构化环境的专门、大规模且精细标注的数据 [1] Impromptu VLA框架 - 清华AIR联合博世中央研究院提出Impromptu VLA框架,旨在提供开放权重和开放数据的驾驶视觉-语言-动作模型 [1] - 该框架是完全端到端、无中间感知表征的"纯血VLA"系统,直接从驾驶视频片段提取多模态特征并生成自然语言格式的驾驶命令 [1] - 系统无需手工设计感知模块、行为先验或中间BEV表达 [1] - 在NeuroNCAP闭环安全评测中表现优异,得分2.15,显著超越CVPR 2025最新提出的BridgeAD系统(1.60) [1] 技术资源与分享 - 论文已发布于arXiv(编号2505.23757v1) [2] - 项目主页在GitHub(ahydchh/Impromptu-VLA) [2] - 清华大学计算机系本科生迟浩瀚将分享该VLA框架 [2] 学习建议 - 建议入门者扎实深度学习和计算机视觉基础,逐步了解自动驾驶各模块 [2] - 推荐通过阅读前沿论文和参与开源项目实践来熟悉数据处理和模型训练流程 [2]
自动驾驶端到端VLA落地,算法如何设计?
自动驾驶之心· 2025-06-22 22:09
自动驾驶VLA模型研究进展 - 端到端自动驾驶已成为主流范式 视觉-语言-动作(VLA)方法伴随具身智能兴起 相关论文横扫前沿领域 [2] - 主机厂如理想 文远知行 小米 小鹏等都在大力尝试VLA技术量产落地 [2] - 学术界和工业界涌现AutoVLA ReCogDrive等优秀工作 关注自适应推理 强化微调等方向 [3][7][9] 关键技术突破 - AutoVLA统一推理和动作生成 采用双重思维模式(快速/慢速思维)和GRPO强化微调方法 [3][4] - ReCogDrive采用三阶段训练框架 集成VLM与扩散规划器 PDMS达89.6创SOTA [7][9] - DriveMoE引入混合专家架构 包含场景专用视觉MoE和技能专用动作MoE 处理罕见驾驶行为 [19][21][22] - OpenDriveVLA通过分层视觉语言对齐和代理-环境-自我交互过程 实现轨迹规划SOTA [28][30][32] 数据集与基准 - Impromptu VLA数据集含8万+视频片段 覆盖4类非结构化场景 显著提升模型性能 [14][18] - DriveAction基准含16185个QA对 直接关联驾驶操作 支持全面评估VLA模型 [23][24] - 行业亟需更多高质量VLA基准 当前工作多基于nuScenes Bench2Drive等有限数据 [47] 行业应用趋势 - VLA模型输出形式向多模轨迹生成发展 文本输出逐渐被替代 [47] - 大规模自动驾驶预训练模型仍欠缺 多数工作依赖Qwen等开源模型 [47] - 时序处理能力待加强 需适配车端实时性要求 [47] - 小米 博世 清华等机构积极布局VLA研发 形成产学研协同 [7][14][19][28] 性能对比 - AutoVLA在nuPlan等基准上PDMS达92.12 碰撞率低于1% [5] - ReCogDrive在NAVSIM基准PDMS达89.6 超越前SOTA 5.6分 [9][10] - DriveMoE在Bench2Drive紧急刹车等场景能力提升显著 均值达47.91% [22] - OpenDriveVLA-7B在nuScenes开环规划L2误差仅0.66m 优于GPT-3.5等基线 [31]