Workflow
IneqMath
icon
搜索文档
大语言模型离“数学证明高手”还有多远?斯坦福、伯克利、MIT 团队提出 IneqMath 评测标准
AI前线· 2025-07-17 12:47
大语言模型数学推理能力评估 - 不等式问题可作为检验AI数学推理能力的理想工具,因其结构简单且易暴露逻辑漏洞[1] - 形式化数学系统(如Lean/Coq)虽能验证证明严谨性,但存在门槛高、自动化程度低等局限性[1] - 大语言模型在自然语言环境下表现优于形式化证明,适合开展"非正式推理"研究[4] IneqMath创新研究方法 - 斯坦福等团队提出将不等式证明拆解为"界限估计"和"关系预测"两个可验证子任务[4] - 构建包含1,252道训练题+200道奥赛级测试题的IneqMath数据集,建立自然语言与形式逻辑的桥梁[8] - 采用自然语言+LaTeX表达方式,平衡可证明性与易用性,答案具有唯一可验证性[6][7] AI裁判系统性能 - 四维度评审器(Toy Case/Logical Gap/Numerical Approximation/Computation)实现F1=0.93的高准确率[15][16] - 系统可检测71.5%答案正确但仅6%过程严谨的案例(Grok 3 mini),揭示模型"蒙答案"现象[18] - 评审器类型中Logical Gap Judge表现最佳(F1=0.96),计算验证类相对较弱(F1=0.80)[17] 模型规模与推理能力关系 - 参数增加仅提升答案准确率,对推理严谨性无显著改善[20] - 延长推理token数量对质量提升有限,存在明显瓶颈效应[23][24] - Gemini 2.5 Pro通过自我批判机制提升5%准确率,定理提示方法最高可提升10%[25] 行业应用与展望 - IneqMath框架为AI数学推理能力提供标准化评估工具[4][8] - 研究证实单纯扩大模型规模无法解决推理严谨性问题,需结合反思机制与工具使用[21][25] - 该方向发展将推动AI从"答案生成"向"过程验证"的范式转变[28][29]
大模型为何难成为「数学家」?斯坦福等揭示严谨证明中的结构性弱点
机器之心· 2025-06-22 12:26
数学推理与AI研究 - 数学证明需要逻辑闭合和严谨推理过程,不等式问题是检验模型推理能力的理想对象[1] - 当前形式化数学系统如Lean、Coq要求极高精度,难以规模化应用于中学到奥数级别的不等式问题[1] - 大语言模型在非形式化推理方面表现出色,能给出看似合理的答案并模仿人类初期思维方式[1] IneqMath创新方法 - 研究团队提出将不等式证明拆解为"界限估计"和"关系预测"两个子任务[2][7] - 构建首个奥林匹克级不等式证明基准数据集IneqMath,包含1,252道训练题目和200道测试题目[11][12] - 数据集覆盖83种定理和29个定理类别,测试集由IMO奖牌得主设计并经数学家审核[12] 评估框架 - 开发LLM-as-Judge框架,包含五种自动评审器评估模型推理严谨性[20] - 评审器系统在与人工标注对齐的任务上达到F1=0.93的表现[24] - 框架可判断模型是"碰巧答对"还是每个推理节点都正确[23] 研究发现 - 存在Soundness Gap现象:模型最终答案准确率与推理严谨性差距显著[27] - Grok 3 mini最终答案准确率71.5%,但逐步评审后骤降至6.0%[29] - 模型规模增大能提升猜测准确率,但对推理严谨性提升有限[30] - 增加推理token数仅带来轻微提升,很快进入饱和状态[32] 改进策略 - 自我批判提升策略为Gemini 2.5 Pro带来约5%的准确率提升[42] - 定理提示策略使Gemini 2.5 Pro准确率提升约10%[42] - 研究团队设立动态更新的排行榜推动模型在严谨数学推理上的进步[36] 研究团队 - 项目由斯坦福大学、麻省理工学院和加州大学伯克利分校的研究者联合完成[44] - 负责人Pan Lu是斯坦福大学博士后研究员,研究方向包括大语言模型和数学发现[45] - 合作者包括MIT博士生Alex Gu和斯坦福大学博士生Jikai Jin[46][47]