Workflow
Redis 的向量集(Vector Sets)
icon
搜索文档
Redis 之父亲证:人类程序员仍力压 LLM!网友锐评:那是你没见过平庸码农被 AI 吊打的样子
程序员的那些事· 2025-05-30 15:10
AI与程序员能力对比 - 核心观点:人类程序员在复杂问题解决和创造性思维方面仍显著优于大语言模型(LLMs),AI当前主要作为辅助工具而非替代品[2][3][10] - Redis之父antirez通过修复HNSW图结构双向连接校验的案例,展示人类能提出LLM无法自主生成的优化方案(如异或累加器检测算法),将2000万向量集的校验时间从90秒优化至可接受范围[5][7][8][10] - 行业专家普遍认为LLM的价值在于充当"智能伙伴",帮助验证想法和代码审查,但无法替代需求分析、社交协作等软件工程核心环节[13][14] 技术实现细节 - Redis向量集修复方案: - 常规方法时间复杂度达O(N²),导致2000万向量加载时间翻倍至90秒[5][7] - LLM(Gemini 2.5 PRO)仅能建议排序+二分查找等基础优化,无法突破性解决指针校验问题[7][8] - 人类提出创新方案: - 哈希表存储连接关系(A:B:X格式),利用memcpy替代snprintf提升效率[8] - 128位寄存器异或累加检测,配合murmur-128哈希函数降低碰撞风险至可接受水平[9][14] 行业观点碰撞 - 能力边界争议: - 顶尖程序员(如antirez)的创造性解决方案能力远超LLM,但平庸程序员可能被AI工具缩小差距[15] - 软件工程的社交属性(需求分析、客户沟通)是AI难以替代的核心竞争力[14] - 技术演进预期: - 当前LLM在代码生成文档等标准化任务中表现最佳,但无法预判未来2年技术突破后的格局[13][16] 典型案例参考 - 高性能编程领域人类优势显著:日本工程师的PowerPC汇编代码性能可超越编译器生成代码达数量级差异[15] - AI生成代码现存缺陷:存在生成3000+行无法运行代码的案例,反映逻辑连贯性不足的问题[16]