Redis Streams
搜索文档
“手写代码已不再必要!”Redis之父罕见表态:AI将永远改变编程,网友质疑:我怎么没遇到这么好用的AI!
猿大侠· 2026-01-19 12:11
文章核心观点 - AI正在永久性地改变编程行业,在绝大多数情况下,亲手编写所有代码已不再是理性选择,开发者的核心价值将转向理解“要做什么”以及“应该如何去做” [8][10][16] - 行业顶尖开发者通过亲身实践证实,AI编程工具能极大提升工程效率,在特定任务上可将耗时从数周缩短至几小时甚至几分钟 [1][12][14][16] - 关于AI编程的实际效用存在显著分歧,部分开发者认为其在复杂系统设计、长期维护和代码质量方面仍存在明显不足 [20][22][26] - 面对不可逆的技术变革,逃避无益,开发者应积极学习并深入测试AI工具以掌握其应用,从而专注于更高层次的创造活动 [29][30][31] 科技圈大佬的观点与态度 - Google首席工程师Jaana Dogan指出,Anthropic的Claude Code用1小时完成了谷歌团队耗时一整年的攻坚工作,方案方向高度一致 [1] - Linux之父Linus Torvalds最初对“用AI写代码”兴趣不大,更看重AI辅助代码维护,但其后亲自体验Vibe coding并创建了新开源项目,展现了实践探索 [1] - Redis之父Salvatore Sanfilippo (antirez) 持颠覆性论断,认为写代码本身在多数情况下已非必要工作,开发者应拥抱AI以更快抵达创造的终点 [2][5][10] AI编程能力的实证与效率提升 - **效率对比**:Claude Code在1小时内完成了谷歌团队一年的攻坚工作 [1] - **具体案例**: - 改进linenoise库以支持UTF-8并构建测试框架,仅需几小时,而过去因成本问题难以实施 [12] - 修复Redis测试中棘手的瞬态失败(由网络波动、高并发等问题引起),AI能持续运行测试直至复现并修复bug [13] - 构建纯C实现的BERT推理库(约700行代码)仅用5分钟,其输出与PyTorch一致,速度仅慢约15% [14] - 根据设计文档,在约20分钟内复现了Redis Streams的全部内部实现 [16] AI编程的优势与适用条件 - **任务类型**:任务越独立、越容易用完整文本描述,模型表现越好,系统编程是典型例子 [15] - **开发者能力**:关键在于开发者能否在脑中建立对问题的清晰抽象并准确传达给模型 [15] - **核心转变**:开发者的核心工作从“写代码”转变为理解“要做什么”以及“应该如何去做”,AI在后一点上也是出色的伙伴 [16] 对行业与社会的影响展望 - **行业民主化**:AI编程有望像90年代的开源运动一样,让小团队拥有与大公司竞争的机会,让代码和知识更加民主化 [17] - **技术集中化风险**:AI技术不能只掌握在少数公司手中,目前开放模型与封闭实验室的前沿模型仍在竞争,其民主化状态能否长期维持尚不确定 [17] - **就业与组织影响**:企业可能选择雇佣更多人构建产品,也可能削减成本仅保留少数擅长提示工程的程序员,其他行业的人类甚至可能被完全取代 [18] - **社会政策建议**:应通过政治投票支持那些理解变革并愿意为失业人群提供支持的政府,以应对可能增加的社会压力 [18] - **积极期待**:AI有望推动科学进步,减少人类生活中的痛苦,提升整体生存状态 [18] 开发者社区的质疑与现存局限 - **代码质量与架构问题**:有开发者指出,AI生成的代码在提交评审前通常需要重写约70%,存在细节处理不到位和根本性架构问题 [22] - **错误率与速度权衡**:响应速度快的模型错误率高得惊人,而更慢、更“深思”的模型等待时间过长,有时不如直接搜索高效 [26] - **适用场景限制**:AI工具可能更适合原型开发或中小项目,在复杂、有15年历史的遗留企业级系统(如多服务、多数据库、硬件通信的系统)中表现不佳 [25][27] - **削弱系统理解**:过度依赖AI可能削弱工程师对系统的整体理解 [27] 面对变革的应对建议 - **不可避免的趋势**:AI发展已出现明显跃迁,从“编码助手”升级为“工程团队替代方案”只是时间问题,可能直接服务于非技术产品团队 [31] - **技术栈影响**:AI可能促使单体架构回潮,因为将业务逻辑置于统一容器更便于AI整体分析,微服务并行开发的优势可能减弱 [31] - **积极投入学习**:跳过AI对职业生涯无益,建议花几周时间谨慎深入地测试新工具,若不适应可间隔数月再尝试 [31] - **保持创造乐趣**:使用AI是为了能够更多、更好地创造,当年熬夜编程所追求的那种创造乐趣依然存在且丝毫未减 [30]
社交APP开发的技术框架
搜狐财经· 2025-05-28 14:49
社交APP技术架构 前端开发 - 移动端分为iOS和Android原生开发,iOS推荐Swift和SwiftUI框架,Android推荐Kotlin和Jetpack Compose框架,性能最佳但开发成本高 [6] - Web端采用React.js、Vue.js、Angular等框架构建单页应用(SPA),适用于社交APP的Web版本和后台管理系统 [5] - 跨平台开发方案包括React Native(JavaScript)、Flutter(Dart)、uni-app(Vue.js)和Taro(React/Vue),可降低多端开发成本,其中uni-app和Taro特别适合中国市场的小程序生态 [6] 后端开发 - Java(Spring Boot/Cloud)适合大型复杂社交APP,具备高并发处理能力 [9] - Python(Django/Flask)适合快速原型开发,语法简洁但高并发性能较弱 [9] - Node.js(Express/NestJS)适合实时聊天等I/O密集型场景,开发效率高 [9] - Go语言适合高并发核心服务,性能接近C/C++且内存占用低 [9] 数据库与存储 - 关系型数据库MySQL和PostgreSQL适合存储用户数据和好友关系 [9] - 非关系型数据库MongoDB适合动态/评论等非结构化数据,Redis用于缓存和实时计数 [9] - 图数据库Neo4j适合处理复杂社交关系网络 [9] - 对象存储(阿里云OSS/腾讯云COS)和CDN用于静态资源分发 [9] 第三方服务集成 - 即时通讯可选用融云/环信等国内SDK或自建WebSocket/MQTT系统 [9] - 音视频处理采用FFmpeg或云服务商(腾讯云TRTC/阿里云RTC) [9] - 内容审核需集成阿里云/腾讯云的内容安全API [8] 中国市场特殊考量 - 必须完成ICP备案和APP备案等合规要求 [8] - 优先选择阿里云/腾讯云等国内云服务商 [8] - 开发框架推荐支持多端发布的uni-app或Taro [8]