准同型相界

搜索文档
DRAM“危机”
半导体行业观察· 2025-04-20 11:50
大模型发展对存储技术的挑战 - AI大模型参数规模从GPT-3的1750亿增长至万亿级,计算资源需求激增,存储带宽成为关键瓶颈 [1] - 服务器算力峰值每两年增长3倍,但DRAM带宽增速仅1.6倍/两年,片间互连带宽增速仅1.4倍/两年,导致处理器利用率仅20%-30% [1] - "存储墙"问题制约AI训练和推理效率,内存存取速度滞后处理器计算速度长达20年 [1] HBM技术的突破与局限 - HBM实现每秒1.2TB数据传输速度,带宽为传统DRAM的数倍至数十倍,缓解AI芯片数据获取压力 [2] - 采用3D堆叠和硅通孔(TSV)技术缩短数据传输路径,但制造工艺复杂且成本高昂 [2] 3D铁电RAM的创新优势 - SunRise Memory开发垂直堆叠FeFET单元,存储密度比DRAM提高10倍,功耗降低90% [4][5] - 利用HfO2铁电效应实现非易失性存储,目标兼容3D NAND晶圆厂生产流程 [5] - KAIST通过调控HfO2准同型相界(MPB)实现4F²存储单元面积,为3D堆叠奠定基础 [6] DRAM+非易失性内存的融合方案 - FMC与Neumonda合作开发HfO2基DRAM+,兼具DRAM性能与非易失性,容量可达千兆位级 [8][9] - 相比传统PZT铁电层,HfO2兼容10nm以下制程,与CMOS工艺集成度更高 [9] Imec的2T0C架构革命 - 用两个IGZO薄膜晶体管(2T)替代传统1T1C单元,保留时间>400秒(传统DRAM的1000倍) [11][12] - 2021年优化后实现>1000秒保留时间、<10ns写入速度及无限耐久性(>10¹¹次读写) [15] - 14nm栅长IGZO晶体管保持>100秒保留时间,RIE技术将保留时间延长至4.5小时 [16] 其他新型存储技术进展 - KAIST开发纳米灯丝PCM技术,功耗降低15倍,兼具DRAM速度与NAND非易失性 [19][20] - 英国兰开斯特大学UK III-V Memory写入时间5ns(与DRAM相当),能耗仅DRAM的1% [21] - 德国JGU团队SOT-MRAM通过轨道霍尔效应降低20%写入电流,能效提升30% [23][24] 行业趋势与未来方向 - AI驱动存储技术进入"架构+材料"双创新阶段,3D堆叠与非易失性成为核心方向 [25] - 多元化技术路线包括3D铁电RAM、IGZO 2T0C、SOT-MRAM等,部分进入工程验证阶段 [25]