Workflow
存储墙
icon
搜索文档
一文看懂“存算一体”
虎嗅· 2025-08-15 14:52
文章核心观点 - 存算一体(Compute In Memory,CIM)通过将存储和计算融合,旨在解决传统冯·诺依曼架构的"存储墙"和"功耗墙"问题,提升计算效率和能效比 [1][12][21] - 该技术尤其适合AI等高算力需求场景,市场规模预计从2023年到2029年以154.7%的年复合增长率增长,达到306.3亿美元 [30][46][79] 技术背景与问题 - 传统冯·诺依曼架构采用存算分离模式,存储与计算独立导致数据传输瓶颈 [2][10] - AI时代数据量爆炸式增长,暴露"存储墙"(数据传输速度远低于计算速度)和"功耗墙"(数据传输能耗占比高达63.7%)问题 [11][12][17] - HBM技术通过3D封装缩短存算距离,但未根本解决分离问题 [18][20] 技术原理与优势 - 存算一体模仿人脑结构,在存储单元内直接计算,减少数据搬运次数,提升效率并降低功耗 [21][22][48] - 适用于AI矩阵乘法和乘累加运算,能效比显著提升(如PRIME方案功耗降低20倍、速度提升50倍) [28][47][48] 技术分类 - 近存计算(PNM):通过封装集成存算单元(如HBM),但仍属存算分离,适用于AI、边缘计算等场景 [36][37][39] - 存内处理(PIM):在存储晶粒中集成算力(如HBM-PIM),适用于语音识别、基因匹配等 [40][42] - 存内计算(CIM):彻底融合存算单元,消除界限,是狭义存算一体,主要服务AI计算 [43][44][46] 存储介质与实现方式 - 易失性存储器(SRAM、DRAM)和非易失性存储器(Flash、RRAM、MRAM等)均可用于存内计算 [51][53][54] - SRAM适合大算力场景(高能效比),DRAM成本低但延迟大,Flash适合小算力场景 [54] - 新型存储器如RRAM(忆阻器)研究热度高,但面临工艺良率和可靠性挑战 [55][57][58] - 模拟存内计算能效高但误差大,适用于低精度场景(如可穿戴设备);数字存内计算精度高但功耗大,适用于云端AI [60][61] 应用场景 - AI相关领域:自然语言处理、图神经网络、智能决策等,对算力效率和能耗要求高 [62][65] - AIoT智能物联网:碎片化市场注重成本、功耗和开发难度,存算一体具备优势 [63][64] - 云端AI计算:替代GPU部分场景,存算一体ASIC芯片在能效和固定任务处理上潜力巨大 [65][66][67] - 延伸应用:感存算一体、类脑计算等新兴领域 [68] 发展历程与现状 - 概念最早于1969年提出,但受限于技术未落地 [23][24] - 2010年后关键技术突破(如忆阻器实现布尔逻辑),2016年PRIME方案验证能效提升 [26][27][28] - 2017年多家巨头推出原型系统,引发学术界和产业界热潮 [29] - 2023年清华大学研发出全球首颗全系统集成忆阻器存算一体芯片 [32] - 当前进入高速发展期,传统芯片巨头和创业企业(如苹芯科技、Mythic等)积极布局 [30][31][33] 市场规模与增长 - 预计2029年全球存算一体技术市场规模达到306.3亿美元,年复合增长率154.7% [79] - 技术正从理论研究走向产业落地,未来几年将涌现更多创新和企业 [33][80]
DRAM“危机”
半导体行业观察· 2025-04-20 11:50
大模型发展对存储技术的挑战 - AI大模型参数规模从GPT-3的1750亿增长至万亿级,计算资源需求激增,存储带宽成为关键瓶颈 [1] - 服务器算力峰值每两年增长3倍,但DRAM带宽增速仅1.6倍/两年,片间互连带宽增速仅1.4倍/两年,导致处理器利用率仅20%-30% [1] - "存储墙"问题制约AI训练和推理效率,内存存取速度滞后处理器计算速度长达20年 [1] HBM技术的突破与局限 - HBM实现每秒1.2TB数据传输速度,带宽为传统DRAM的数倍至数十倍,缓解AI芯片数据获取压力 [2] - 采用3D堆叠和硅通孔(TSV)技术缩短数据传输路径,但制造工艺复杂且成本高昂 [2] 3D铁电RAM的创新优势 - SunRise Memory开发垂直堆叠FeFET单元,存储密度比DRAM提高10倍,功耗降低90% [4][5] - 利用HfO2铁电效应实现非易失性存储,目标兼容3D NAND晶圆厂生产流程 [5] - KAIST通过调控HfO2准同型相界(MPB)实现4F²存储单元面积,为3D堆叠奠定基础 [6] DRAM+非易失性内存的融合方案 - FMC与Neumonda合作开发HfO2基DRAM+,兼具DRAM性能与非易失性,容量可达千兆位级 [8][9] - 相比传统PZT铁电层,HfO2兼容10nm以下制程,与CMOS工艺集成度更高 [9] Imec的2T0C架构革命 - 用两个IGZO薄膜晶体管(2T)替代传统1T1C单元,保留时间>400秒(传统DRAM的1000倍) [11][12] - 2021年优化后实现>1000秒保留时间、<10ns写入速度及无限耐久性(>10¹¹次读写) [15] - 14nm栅长IGZO晶体管保持>100秒保留时间,RIE技术将保留时间延长至4.5小时 [16] 其他新型存储技术进展 - KAIST开发纳米灯丝PCM技术,功耗降低15倍,兼具DRAM速度与NAND非易失性 [19][20] - 英国兰开斯特大学UK III-V Memory写入时间5ns(与DRAM相当),能耗仅DRAM的1% [21] - 德国JGU团队SOT-MRAM通过轨道霍尔效应降低20%写入电流,能效提升30% [23][24] 行业趋势与未来方向 - AI驱动存储技术进入"架构+材料"双创新阶段,3D堆叠与非易失性成为核心方向 [25] - 多元化技术路线包括3D铁电RAM、IGZO 2T0C、SOT-MRAM等,部分进入工程验证阶段 [25]