可信任的数字金融

搜索文档
李礼辉:构建可信任的数字金融 | 金融与科技
清华金融评论· 2025-05-11 18:39
中国大模型发展的新突破 - DeepSeek-V3开源模型获全球高度评价,性能与GPT-4o相当,多项表现位列全球前几名,训练成本仅600万美元,远低于GPT-4o的1亿美元 [4] - 算法创新成为核心竞争力,包括MLA多头潜在注意力机制、MoE混合专家架构等,为金融机构提供重要技术支撑 [4] - 昇腾910B芯片实现自主化突破,半精度算力超越英伟达A100,能效比高25%,国内产业链快速适配形成模型即服务等应用模式 [5] AI技术的陷阱与挑战 - 安全风险突出,如Ollama框架存在无鉴权机制、数据窃取和恶意攻击漏洞,影响模型服务的稳定性和数据完整性 [8] - 主流大模型如Grok-3、GPT-4、DeepSeek-V3均存在模型幻觉问题,且尚未解决歧视、算法共振、隐私泄露等技术缺陷 [9][10] - AI智能体首次被用于网络攻击,动态代码生成能力对国家安全防御体系构成新挑战 [10] 数字金融创新的挑战与目标 - 金融行业需实现从"可用"到"好用"的跨越,核心在于构建可信任的数字金融,主动防范AI陷阱并满足监管要求 [12][13] - 垂直模型需聚焦金融场景专业化能力,而非通用复杂问题解决能力,强调模型可信度和解释性 [13] 可信任数字金融的构建路径 - 高可靠性要求:部署AI时需强化防火墙、零信任架构等安全措施,针对不同场景需特别注意模型幻觉、歧视等问题 [15] - 可解释性为关键:需展示完整推理路径,通过可视化工具和注意力机制提升透明度 [15] - 行业级与企业级模型协同发展:预训练行业级模型降低边际成本,科技企业与金融机构合作共建生态圈 [16]