多头潜在注意力机制(MLA)

搜索文档
硬核拆解大模型,从 DeepSeek-V3 到 Kimi K2 ,一文看懂 LLM 主流架构
机器之心· 2025-08-07 17:42
大语言模型架构演进 - 自2019年GPT-2至2024-2025年DeepSeek-V3/LLaMA 4,主流大语言模型架构保持高度一致性,核心改进集中在位置编码、注意力机制和激活函数等细节优化[1] - 位置编码从绝对位置编码发展为旋转位置编码(RoPE),注意力机制从多头注意力(MHA)过渡到分组查询注意力(GQA),激活函数从GELU替换为SwiGLU[1] - 过去七年大语言模型更多是框架内精雕细琢,而非颠覆性创新[2] DeepSeek V3/R1关键技术 - 采用多头潜在注意力机制(MLA),通过将key/value张量压缩至低维潜在空间节省KV缓存内存,相比传统MHA内存占用更低[12][18][21] - 引入专家混合(MoE)架构,每个模块含256个专家但仅激活9个(1共享+8路由选择),总参数量达6710亿但推理计算量可控[23][27][30] - MLA技术最早由DeepSeek V2提出,并非V3首创[22] OLMo 2架构特点 - 采用传统MHA而非GQA或MLA,核心创新在于归一化层设计:使用RMSNorm且置于注意力/前馈模块后(Post-Norm变体)[35][38][39] - 在注意力模块内部引入QK-Norm,对Query/Key进行额外归一化,与Post-Norm结合显著提升训练稳定性[46][47] - 整体架构接近Llama 3,主要差异在于注意力机制和归一化策略[48][52] Gemma 3创新设计 - 采用滑动窗口注意力机制,将全局注意力转为局部注意力,大幅降低KV缓存内存需求[54][56][59] - 在GQA模块同时使用Pre-Norm和Post-Norm,结合两种归一化策略优势,形成独特双重归一化结构[62][64][67] - 滑动窗口注意力可与GQA协同使用,实现计算效率与模型性能平衡[60] Mistral Small 3.1特性 - 24B参数规模下性能超越Gemma 3 27B,归因于定制分词器、更小KV缓存和更少层数[73][75] - 放弃早期滑动窗口注意力设计,改用标准GQA机制[76] Llama 4架构对比 - 采用MoE架构但设计不同于DeepSeek-V3:总参数4000亿(比DeepSeek少68%),每token仅激活2个专家[80][82][84] - 使用GQA而非MLA,MoE层与密集层交替排列(非连续部署),专家隐藏维度达8192[84] Qwen3系列差异化 - 同时提供Dense和MoE版本:0.6B致密模型适合轻量部署,235B MoE模型取消共享专家机制[88][91][94] - MoE架构与DeepSeek-V3高度相似,但专家数量增至8个且移除共享专家[94][95] SmolLM3技术亮点 - 30亿参数规模表现优异,采用无位置嵌入(NoPE)机制,完全移除显式位置编码[101][104][109] - 通过因果注意力掩码隐式学习位置信息,在序列长度泛化方面优于传统位置编码方案[108][109] Kimi K2突破性设计 - 1万亿参数规模为当前最大开源LLM,首次在生产级模型应用Muon优化器替代AdamW[112] - 基于DeepSeek-V3架构扩展,MoE模块专家数更多但MLA注意力头更少[112][116]
理想的VLA可以类比DeepSeek的MoE
理想TOP2· 2025-06-08 12:24
理想VLA与DeepSeek MoE技术类比 - VLA和MoE均为首次完整落地到新领域并取得良好结果 均包含大量创新 但两者在具体实现方式上存在显著差异 [2] - DeepSeek MoE通过细粒度专家划分将单个专家隐藏层维度缩小至1/4 专家数量增至4倍 使激活组合可能性从120种提升至44亿种量级 [2] - 采用共享专家隔离机制 设置占总专家数1/8的固定共享专家处理公共知识 显著减少不同专家间的知识冗余 [2] 理想VLA核心技术突破 - 需攻克6大关键技术点:MindVLA设计/训练流程 3D空间理解能力获取 驾驶知识语言模型构建 Diffusion融合 车端实时推理实现 [4] - 3D高斯技术通过RGB图像自监督训练 实现多尺度几何表达与丰富语义承载 为3D表征提供核心支持 [4] - 基座模型采用MoE架构和稀疏注意力机制 在扩容参数量的同时控制推理负担 训练数据配比优化减少文史类数据 增加3D及自动驾驶图文数据 [6][7] 模型训练与推理优化 - 引入未来帧预测和稠密深度预测任务 通过快慢思考双系统设计(快思考直接输出action token 慢思考采用固定简短CoT模板)提升实时性 [8] - 创新并行解码机制:语言逻辑采用因果注意力逐字输出 action token通过双向注意力一次性全输出 [8] - 使用小词表和投机推理技术 使CoT效率提升44亿倍量级 实现参数规模与推理性能平衡 [8] Diffusion技术应用 - 将action token解码为驾驶轨迹 同步生成自车轨迹与周边交通参与者轨迹 复杂环境博弈能力提升120% [9] - 采用多层Dit结构支持条件输入改变生成结果(如"开快点"指令响应) 类比图像多风格生成技术 [10] - 使用ODE采样器将Diffusion生成步骤压缩至2-3步 解决传统方法效率低下问题 [11] 强化学习突破 - 构建端到端可训架构 解决早期强化学习中信息传递低效问题 [12] - 通过多视角噪声训练生成模型 联合3D重建优化 创建真实度达标的训练环境 场景建设效率提升20倍 [12] 技术路线演进 - V10-11阶段确实跟随特斯拉技术路线 但V12后自主创新比例显著提升 仅在快系统部分保留特斯拉框架 [13][14] - 慢系统为完全自主创新 特斯拉未涉及该领域 整体技术路线类比"增程式"方案:在算力/数据资源不足条件下实现可用性 [14] - VLM到VLA的演进为公司独立提出的技术路径 非跟随策略 获王兴评价为"真正实现Think Different"的典型案例 [15]