Workflow
建图
icon
搜索文档
SLAM的最终形态应该是什么样的?
自动驾驶之心· 2025-08-06 11:25
SLAM技术本质 - 建图过程本质是将传感器数据转化为地图或模型 无需拘泥于形式或可视化呈现 [3] - 定位过程本质是利用地图模型和传感器数据连续输出位置姿态 计算方式不影响核心功能 [5] - 技术命名差异不影响功能本质 关键在于输入输出的数据连续性 [6] 传统SLAM方法瓶颈 - 技术原理停滞不前 主要精力集中于处理极端案例 存在无法突破的固有局限 [7] - 性能提升与数据规模不相关 缺乏 scalability [7] 新兴数据驱动方法挑战 - 泛化能力受限 性能高度依赖数据分布 传统方法具有普适性优势 [12] - 实时性不达标 建图需100ms/帧 定位需20ms/帧的千元级硬件标准尚未实现 [12] - 故障诊断困难 缺乏传统方法的可调试性 依赖数据增量解决问题 [12] 技术发展前景 - 数据驱动将成为主流 百万级参数调优将取代人工噪声调整 [13] - 当前技术处于过渡期 新旧方法各有70%左右场景覆盖率 但商业化需要100%可靠场景 [13] - 发展瓶颈在于数据规模不足 缺乏数十TB带真值pose的训练数据集投入 [13] 硬件设备进展 - 出现多传感器融合的3D扫描仪解决方案 集成激光雷达/IMU/RTK/视觉等多模态感知单元 [14]