循环神经网络

搜索文档
【广发金工】神经常微分方程与液态神经网络
广发金融工程研究· 2025-03-06 08:16
广发证券首席金工分析师 安宁宁 anningning@gf.com.cn 广发证券资深金工分析师 陈原文 chenyuanwen@gf.com.cn 联系人:广发证券金工研究员 林涛 gflintao@gf.com.cn 广发金工安宁宁陈原文团队 摘要 神经常微分方程: 在机器学习国际顶会NeurIPS 2018上,Chen等人发表的论文《Neural Ordinary Differential Equations》获得了大会的最佳论文奖。简单来 说,一个常见的ResNet网络通常由多个形如h_{t+1}=f(h_t,_t)+h_t的残差结构所组成。在常规求解中,需计算出每一个残差结构中最能拟合训练数据的网 络参数。而该论文提出,假设当ResNet网络中的残差结构无限堆叠时,则每一个残差结构的参数都可以通过求解同一个常微分方程来获得。 液态神经网络: 基于上述工作,来自麻省理工学院的Ramin Hasani等人,创新性地以常微分方程的形式描述循环神经网络的隐藏状态变化,提出了一类被 称之为液态神经网络的模型,这些研究成果被发表在《Nature:Machine Intelligence》等国际顶级期刊上。此类模 ...