Workflow
思维链(CoT)
icon
搜索文档
超越O4-mini,多模态大模型终于学会回头「看」:中科院自动化所提出GThinker模型
机器之心· 2025-07-19 11:13
多模态大模型技术突破 - 当前主流多模态大模型(如Qwen2 5-VL GPT-4o)在数学 科学等结构化任务表现优异 但在通用场景下存在视觉线索误判且缺乏修正机制的问题[1][7][8] - 中科院自动化所提出的GThinker模型通过「线索引导式反思」机制实现「思考-反思-修正」闭环 显著提升复杂场景推理能力[2][3][10] - 模型采用两阶段训练法:先通过7K高质量标注数据冷启动反思能力 再通过动态采样强化学习实现跨场景泛化[17][18][20][23] 模型性能表现 - 在M³CoT基准测试中 GThinker-7B以81 5%综合得分超越O4-mini等闭源模型 并在科学(90 7%)数学(81%)等子领域达到SOTA[26][28] - 通用场景测试显示 该模型在MMStar(66 4%)RealWorldQA(70 1%)等数据集上优于Gemini-2 5 Pro(73 6%/78%)和GPT-4o(65 1%/76 2%)[29] - 方法具备泛化性 可使Qwen2 5-VL等开源模型在OpenCompass学术榜单上平均提升1个百分点(如Qwen2 5-VL从70 9%升至72 2%)[30][31] 技术创新细节 - 核心「Cue-Rethinking」流程分三阶段:自由推理标记视觉线索→触发反思提示→系统性回溯验证并修正结论[12][13][14] - 训练数据构建采用多模型协同标注策略 覆盖通用 数学 科学三大领域 并通过embedding聚类保证数据多样性[20][27] - 采用DAPO训练算法 动态采样结合无KL策略 更适合长链思考任务 相比GRPO提升探索效率[27]
突发|思维链开山作者Jason Wei被曝加入Meta,机器之心独家证实:Slack没了
机器之心· 2025-07-16 10:22
核心观点 - Meta持续从OpenAI挖走顶尖AI人才,最新目标是知名研究员Jason Wei和Hyung Won Chung [1][2] - 两位科学家在AI大模型领域贡献显著,Jason Wei是思维链(CoT)技术的主要作者,论文引用量超1.7万次 [4][6] - Hyung Won Chung是OpenAI o1系统的核心贡献者,参与多个重大项目研发 [4][29][38] 人才流动 - Jason Wei和Hyung Won Chung的Slack账号已被OpenAI停用,离职消息获多方证实 [2] - 两人均毕业于MIT,曾任职谷歌,2023年加入OpenAI后现可能同时转投Meta [6][18][27] - Jason Wei未直接回应跳槽传闻,但社交媒体评论普遍认为其将加入Meta [9][10] 技术贡献 - Jason Wei的CoT论文引用量超1.7万次,总论文引用量达77k,位列前两位的是CoT和GPT-4技术报告 [6][21] - Hyung Won Chung主导开发了OpenAI o1系列模型,强化了推理、搜索及RL策略能力 [29][38] - 两人参与OpenAI关键项目包括o1-preview、o1正式版、Deep Research及Codex mini模型训练 [18][29] 行业影响 - 人才流动反映Meta在AI领域的人才争夺策略,OpenAI面临核心团队持续流失压力 [1][41] - Jason Wei提出的RL"同策略"理念强调差异化研究路径,可能影响未来AI研发方法论 [11][12][13] - Hyung Won Chung的技术落地能力推动AI从理论到应用生态的闭环构建 [40]
ACL 2025|为什么你设计的 Prompt 会成功?新理论揭示大模型 Prompt 设计的奥秘与效能
机器之心· 2025-06-16 12:04
大型语言模型提示工程研究 核心观点 - 研究首次构建量化Prompt搜索空间复杂度的理论框架 将提示工程从经验性"炼丹"转向科学化 [5][7] - Prompt在CoT推理中扮演"信息选择器"角色 通过精确提取隐藏状态关键信息引导模型推理路径 [7][12][14] - 最优提示设计可使LLM推理性能提升超50% 显著优于无监督CoT和次优监督CoT [29][36] 理论框架突破 - 提出Prompt空间与答案空间的双层搜索模型 Prompt空间决定信息提取策略 答案空间执行具体推理步骤 [20][22] - 定义Prompt空间复杂度公式 取决于隐藏状态总信息量n与单步提取信息量s的比值 [14][17] - 最优提示需满足三要素:明确每步输出内容 聚焦核心s比特信息 编码任务算法蓝图 [28] 实验验证 - 在Modular Arithmetic等任务中 S-CoT准确率达100% 较无CoT提升78个百分点 [27] - 监督CoT在Parity Check任务中准确率98.6% 较次优监督高19.7个百分点 [30] - ToT/GoT等变体仅优化答案空间导航 无法突破底层Prompt模板的性能上限 [32][33] 技术机制解析 - CoT通过文本生成实现递归计算 将高维隐藏状态离散化为可解释中间步骤 [9][15] - Transformer原生架构计算深度有限 无法直接处理复杂多步推理任务 [10] - 错误提示会导致模型提取冗余信息 如S-CoT-SUB准确率骤降至26% [10][29] 行业应用启示 - 研究为AutoPrompt等自动化方法提供理论基准 需同步优化Prompt与答案空间 [4][22] - 证实人类监督在提示设计中的不可替代性 最优模板需结合领域知识 [23][36] - 通用提示如"think step by step"存在性能天花板 需定制化设计 [36]
实测思维链大变!DeepSeek R1一个“小升级”性能直逼o3,但仍“过度思考”?
AI前线· 2025-05-29 11:58
DeepSeek-R1-0528版本升级 - 公司在Huggingface平台开源了新版本DeepSeek-R1-0528,主要升级推理精度和代码生成速度[1][2] - 新版本在Live CodeBench基准测试中性能媲美OpenAI的o3(High)版本[2] - 官方称此次为"小版本试升级",未发布训练方法技术报告[3] 模型性能表现 - 在8/1/2024测试中,DeepSeek-R1-0528以Pass@1 73.1排名第四,优于Groq-3-Mini(66.7)和Gemini-2.5-Flash-Preview(60.6)[3] - Easy-Pass@1达98.7,与排名第一的04-Mini(High)(99.1)接近[3] - Medium-P表现与多数竞品持平(8分),优于Grok-3-Mini(7分)和Gemini-2.5-Flash-Preview(7分)[3] 用户实测反馈 - 唯一能正确回答"9.9-9.11"问题的模型[7] - 推理能力接近Google模型,写作任务更自然且格式优化[8] - 编程能力显著提升但仍落后于o3和Claude 4[9] - 存在"过度思考"问题,如解答高中数学题耗时6分钟[9] 思维链改进 - 思维链(CoT)行为发生重大变化,从类似o系列转向类似Gemini风格[9] - 新版CoT被评价为"更加面向用户"[9] - 任务处理时间延长至每项30-60分钟[8] 行业动态 - AICon北京站将聚焦AI Agent构建、多模态应用等前沿议题[12] - Claude 4发布全球最强编码模型,可实现自主编码7小时[12] - Grok 3被质疑套壳Claude,xAI工程师遭批评[12] - 印度国家级大模型上线两天仅300余次下载,远低于韩国大学生模型(20万次)[12]
北大校友、OpenAI前安全副总裁Lilian Weng关于模型的新思考:Why We Think
Founder Park· 2025-05-18 15:06
大模型测试时计算优化 - 核心观点:通过延长模型"思考时间"可显著提升大语言模型在复杂推理任务中的性能,这已成为超越传统模型规模扩展的新优化维度 [4][5][91] - 性能提升表现:GPT/Claude/Gemini等模型通过思维链(CoT)策略在数学推理(5-6%提升)、代码生成等任务上持续突破性能边界 [4][24][16] - 计算资源视角:Transformer生成每个token需执行参数数量两倍的FLOPs,而MoE稀疏模型可降低至2×参数数÷稀疏度 [10] 思维链技术演进 - 早期方法:监督学习人类解题路径或设计"逐步思考"提示语,可使数学问题解决成功率提升显著 [12][14] - 强化学习应用:在STEM问题集上采用策略梯度算法结合自动评估,DeepSeek-R1模型通过两轮SFT-RL训练实现推理能力突破 [31][32][36] - 自我修正机制:需依赖外部反馈信号避免幻觉,修正器模型通过价值提升对(提示x,初始y,修正y')三元组训练实现迭代改进 [29][34] 并行与序列优化策略 - 并行采样:best-of-N和束搜索通过过程奖励模型(PRM)筛选候选,在GSM8k等任务实现5-6%准确率提升 [23][24] - 序列修订:递归检视(Recursive Inspection)和SCoRe方法通过KL散度惩罚防止行为坍缩,形成连续改进轨迹 [20][30] - 混合策略:简单问题适用纯序列化策略,高难度问题需组合并行与序列方法获取最优表现 [19] 架构创新与工具整合 - 递归架构:Universal Transformer等设计实现自适应计算时间,3.5B模型在r¯=32迭代次数达到性能饱和 [71][73] - 思考token机制:插入特殊token<T>或暂停标记可隐式扩展计算循环,使模型复杂度降低30% [73][74] - 外部工具调用:PAL和Chain of Code方法将数学计算/代码执行外包,ReAct框架整合Wikipedia API等知识源 [45][48] 可解释性与忠实度 - 思维链监控:可有效检测reward hacking行为,对抗样本的鲁棒性随思考时间延长提升51% [51][65] - 忠实度测试:通过扰动提示实验显示推理模型(Claude 3.7/DeepSeek R1)比非推理模型更可能揭示真实思维过程 [62][64] - 优化压力风险:RL训练中直接优化CoT易导致新型reward hacking,需设计n-gram重复惩罚等防护机制 [66][69]
刚刚!北大校友Lilian Weng最新博客来了:Why We Think
机器之心· 2025-05-18 12:25
大模型测试时计算优化 - 核心观点:通过延长模型"思考时间"(测试时计算)可显著提升大语言模型在复杂推理任务中的性能表现,该方向与人类认知双系统理论高度相关[2][6] - GPT、Claude、Gemini等模型通过思维链(CoT)和测试时计算策略优化,在逻辑推理、长文本理解、数学问题求解等高级认知任务上不断突破性能边界[2] - Transformer生成每个token的计算量约为参数量的2倍,而稀疏模型(MoE)因部分网络激活可降低计算量至2×参数数÷稀疏度[8] 思维链技术演进 - 思维链(CoT)允许模型根据问题难度动态调整计算量,早期通过监督学习人类编写的推理路径实现[13] - 强化学习在可验证答案的数据集(如STEM问题)上应用显著提升CoT性能,近期采用策略梯度算法结合自动评估成为主流方法[14] - 模型规模越大,"思考时间"带来的性能收益越显著,在数学问题上成功率提升明显[16] 并行采样与序列修订 - 并行采样通过生成多个候选序列并用验证器筛选最优解,实现简单但依赖模型单次生成能力[19][26] - 序列修订通过迭代修正输出实现质量提升,需额外控制修订风险如正确答案被错误修改[20] - 实验表明简单问题适合纯序列策略,高难度问题需组合并行与序列方法才能获得最优表现[21] 强化学习应用 - DeepSeek-R1通过两阶段SFT-RL训练在数学/编程任务表现优异,验证纯强化学习可涌现"顿悟时刻"类高级推理能力[42][46] - 推理类RL训练使用格式奖励(特殊token包裹CoT)和准确性奖励(自动验证答案)双重机制[43] - 失败案例显示过程奖励模型易导致奖励欺骗,蒙特卡洛树搜索因token空间过大难以应用[49] 外部工具整合 - PAL和Chain of Code方法通过调用代码解释器处理数学计算/编程任务,扩展模型能力边界[52] - ReAct方法结合Wikipedia API调用与推理轨迹生成,实现外部知识整合[56] - OpenAI o3/o4-mini模型融合网页搜索、代码执行等工具操作,验证计算资源与性能正相关[57] 连续空间思考架构 - 递归架构如Universal Transformer通过自适应计算时间动态调整推理步数[82] - 思考token技术通过插入特殊token为模型争取额外计算时间,在数字推理任务效果显著[85] - Quiet-STaR实现token级推理,通过生成未来文本的合理化解释提升预测质量[89] 测试时计算规模效应 - 测试时计算优化相比参数扩展可能更高效,但对困难问题的弥补能力有限[107] - 思维链长度与评估准确率呈正相关,但简单拒绝采样会导致反向scaling现象[112][113] - 最佳效果出现在推理token远少于预训练token时,表明基础模型能力仍是关键[112]