测试时计算

搜索文档
3D芯片堆叠,新方法
半导体行业观察· 2025-07-01 09:03
半导体封装技术进展 - 半导体封装的下一个重大飞跃需要新技术、新工艺和新材料,以实现性能数量级提升,对人工智能时代至关重要 [1] - AMD、台积电、三星、英特尔等公司在混合键合、玻璃芯基板、微通道冷却等方面取得显著进步 [1] - 人工智能对计算的需求将持续增长,芯片制造和封装创新将发挥核心作用 [2] 热管理与液体冷却技术 - 芯片级液体冷却技术正在兴起,以解决强制风冷技术的极限问题 [4] - 台积电的硅集成微冷却器 (IMEC-Si) 在10升/分钟水流条件下可实现超过3,000瓦的均匀功耗,功率密度高达2.5 W/mm² [6] - 佐治亚理工学院提出“芯片作为冷却剂”概念,采用5nm TSV的硅散热器冷却能力超过300W/cm² [9] - 三星在移动处理器中采用铜基散热块,散热性能提高20% [11][13] 混合键合技术 - 混合键合间距已从10µm微缩至1µm,英特尔展示了相关研究成果 [5][16] - 工研院和Brewer Science展示了五层堆叠结构,采用聚合物/铜RDL进行铜-铜混合键合,适用于高速数字应用 [14] - 晶圆间键合和芯片间键合各有优势,后者在贴装精度和翘曲控制方面面临挑战 [17] 背面供电技术 - 背面供电技术在晶圆背面构建供电网络,降低晶体管电压降,但加剧了热点问题 [19] - IBM开发了AI模型用于精确计算后端堆栈的传热,优化设计阶段的散热考虑 [21] - Imec模拟显示,背面供电网络在逻辑和存储器堆叠中的热影响显著,逻辑芯片位于顶层的配置受存储器温度限制 [23][24] 共封装光学器件 (CPO) - 共封装光学器件将光学引擎与GPU和HBM集成,传输速度从200 Gb/s提升到6.4Tb/s,带宽提高32倍 [26] - ASE展示了用于ASIC交换机和以太网/HBM的模块化CPO平台 [28] - 康宁和Fraunhofer IZM提出可扩展的平面二维波导电路,减少光纤电缆端接和手动组装需求 [28] 热模拟与封装设计 - 热模拟在多芯片组封装设计中发挥关键作用,用于选择最终设计并降低风险 [28] - Imec的3D堆栈模拟显示,层间冷却技术可将温度从500°C降至50°C左右 [24]
北大校友、OpenAI前安全副总裁Lilian Weng关于模型的新思考:Why We Think
Founder Park· 2025-05-18 15:06
文章转载自「机器之心」的编译版本。 学习大模型的优质博客又更新了! 最近,北大校友 Lilian Weng (OpenAI前AI安全与机器人技术应用研究副总裁,现Thinking Machines Lab联合创始人,知名博客Lil'Log作者) 更新了一篇长长长长长长长博客《Why We Think》。 最新、最值得关注的 AI 新品资讯; 不定期赠送热门新品的邀请码、会员码; 文章回顾了近期在如何有效利用测试时计算(即「思考时间」)及其作用机制方面的研究进展,旨在让模型「思考得更久」这一目标可以从多个角 度得到合理动机支持。 通过观察 GPT、Claude、Gemini 等模型的迭代,可以清晰地看到,它们在复杂逻辑推理、长文本理解、数学问题求解以及代码生成与调试等高级 认知任务上的性能边界被不断拓展。 这种性能的提升得益于思维链(CoT)和测试时计算等策略的优化,但也带来了新的研究挑战。 为了方便国内读者更好地学习这篇内容,机器之心对此文章进行了编译。感兴趣的读者也可查阅原英文内容。 英文博客链接: https://lilianweng.github.io/posts/2025-05-01-thinking ...
翁荔最新万字长文:Why We Think
量子位· 2025-05-18 13:20
核心观点 - 通过"测试时计算"(Test-time Compute)和"思维链"(Chain-of-Thought,CoT)技术可显著提升模型性能,突破当前能力瓶颈 [1][2] - 让模型在输出答案前多思考一会儿(如智能解码、思维链推理、潜在思考等方法)能提升智能水平 [2] - 该方法与人类思考方式深度关联,借鉴了心理学中的双系统理论(系统1快速直觉 vs 系统2慢速逻辑) [10][11] 心理学类比 - 人类思考分为系统1(快速直觉但易出错)和系统2(慢速逻辑更理性),模型通过延长思考时间可模拟系统2的深度分析 [10][11] - 数学问题等复杂任务需要系统2思考,模型通过CoT实现类似过程 [10] 计算资源优化 - Transformer模型的计算量约为参数量的2倍,稀疏模型(如MoE)计算量=2*参数/稀疏度 [13] - CoT允许模型根据问题难度动态调整计算量,提升效率 [13] - 测试时计算通过自适应修改推理时的输出分布优化性能 [24] 思维链技术发展 - 早期方法包括监督学习生成中间步骤(如数学题推导)和验证器判断答案正确性 [18] - 强化学习在可验证答案的数据集(如STEM题目)上大幅改进CoT推理能力 [19] - DeepSeek-AI的R1技术报告显示简单策略梯度算法即可实现强劲性能 [20] 并行采样与顺序修订 - 并行采样(如N选1、束搜索)通过多候选筛选提升准确性,但受模型单次生成能力限制 [24][25][29] - 顺序修订通过迭代修正错误,但需依赖外部反馈避免性能下降 [24][37][38] - 两者结合可优化不同难度问题的表现 [24] 强化学习与外部工具整合 - 强化学习(如SCoRe框架)通过多轮次优化实现自我修正 [41] - 外部工具(如代码解释器、知识搜索API)可弥补模型计算或知识短板 [45] - 纯RL无需监督微调即可涌现反思与回溯能力 [45] 架构创新与未来挑战 - 循环架构(如Universal Transformer)动态调整计算步数提升效率 [50] - 显式/隐式标记技术(如暂停标记、Quiet-STaR)可增加计算时间 [50] - 未来需解决奖励破解、无监督自我修正、性能迁移至基础模型等挑战 [50]
刚刚!北大校友Lilian Weng最新博客来了:Why We Think
机器之心· 2025-05-18 12:25
大模型测试时计算优化 - 核心观点:通过延长模型"思考时间"(测试时计算)可显著提升大语言模型在复杂推理任务中的性能表现,该方向与人类认知双系统理论高度相关[2][6] - GPT、Claude、Gemini等模型通过思维链(CoT)和测试时计算策略优化,在逻辑推理、长文本理解、数学问题求解等高级认知任务上不断突破性能边界[2] - Transformer生成每个token的计算量约为参数量的2倍,而稀疏模型(MoE)因部分网络激活可降低计算量至2×参数数÷稀疏度[8] 思维链技术演进 - 思维链(CoT)允许模型根据问题难度动态调整计算量,早期通过监督学习人类编写的推理路径实现[13] - 强化学习在可验证答案的数据集(如STEM问题)上应用显著提升CoT性能,近期采用策略梯度算法结合自动评估成为主流方法[14] - 模型规模越大,"思考时间"带来的性能收益越显著,在数学问题上成功率提升明显[16] 并行采样与序列修订 - 并行采样通过生成多个候选序列并用验证器筛选最优解,实现简单但依赖模型单次生成能力[19][26] - 序列修订通过迭代修正输出实现质量提升,需额外控制修订风险如正确答案被错误修改[20] - 实验表明简单问题适合纯序列策略,高难度问题需组合并行与序列方法才能获得最优表现[21] 强化学习应用 - DeepSeek-R1通过两阶段SFT-RL训练在数学/编程任务表现优异,验证纯强化学习可涌现"顿悟时刻"类高级推理能力[42][46] - 推理类RL训练使用格式奖励(特殊token包裹CoT)和准确性奖励(自动验证答案)双重机制[43] - 失败案例显示过程奖励模型易导致奖励欺骗,蒙特卡洛树搜索因token空间过大难以应用[49] 外部工具整合 - PAL和Chain of Code方法通过调用代码解释器处理数学计算/编程任务,扩展模型能力边界[52] - ReAct方法结合Wikipedia API调用与推理轨迹生成,实现外部知识整合[56] - OpenAI o3/o4-mini模型融合网页搜索、代码执行等工具操作,验证计算资源与性能正相关[57] 连续空间思考架构 - 递归架构如Universal Transformer通过自适应计算时间动态调整推理步数[82] - 思考token技术通过插入特殊token为模型争取额外计算时间,在数字推理任务效果显著[85] - Quiet-STaR实现token级推理,通过生成未来文本的合理化解释提升预测质量[89] 测试时计算规模效应 - 测试时计算优化相比参数扩展可能更高效,但对困难问题的弥补能力有限[107] - 思维链长度与评估准确率呈正相关,但简单拒绝采样会导致反向scaling现象[112][113] - 最佳效果出现在推理token远少于预训练token时,表明基础模型能力仍是关键[112]
前谷歌CEO:千万不要低估中国的AI竞争力
虎嗅· 2025-05-10 11:55
埃里克·施密特(Eric Schmidt),前谷歌CEO,曾担任美国国家安全委员会AI事务负责人,现任 Relativity Space公司董事长,是全球AI战略与技术治理的重要声音之一。本次对谈录音于2024年在 YouTube频道《AI Founders Journey》发布,聚焦创始人心理、人工智能竞赛、中美开源博弈及超级智 能时代的社会挑战。分享给大家,希望对你有启发。 创始人心理:从天赋到验证机制 主持人:大家好,欢迎收听《AI创始人之旅》第一期节目。我是主持人Air。今天非常高兴邀请到我的 朋友Eric Schmidt。他曾担任谷歌CEO,现在是Relativity Space的首席执行官。嗨,Eric,很高兴再次见 到你。顺便祝贺你获得新职位。首先,你想怎么介绍自己? Eric Schmidt:我曾是谷歌的首席执行官,现在担任Relativity Space的董事长,这是一家专注于大型火 箭的私营航天企业。很多人可能不知道,其实我并不是那种典型的创业者类型。 主持人:有趣,那我们就从这里聊起吧。作为创始人,最难的事情之一就是找到优秀的人才。但讽刺的 是,当你真的找到了,他们往往最后都会自己去创业 ...
深度|前谷歌CEO谈全球AI竞赛:AI竞争核心是系统能否自我演化;AI不仅没有泡沫,反而被严重低估了
Z Potentials· 2025-05-09 11:35
创始人心理与团队建设 - 创始人分为两种类型:天赋型创始人具备独到远见,职业经理人型则擅长规模化扩张和制度建设[4] - 优秀人才往往最终选择创业,初创公司创始人参与的是"验证游戏",10家公司中9家不会成功,4家彻底失败,5家成为"活死人"[6] - 领导力核心是在压力下迎难而上,CEO角色被严重低估,需要每天处理各种挑战并坚持12-14小时工作[12] - 天后型人才是公司真正推动者,需要重点保留和支持,而中庸型员工本质自利应被淘汰[20] AI行业竞争格局 - AI领域尚未出现泡沫,反而被严重低估,技术曲线还未触顶,临界点尚未到来[9][28] - 中国将AI视为国家级战略,投入数十亿美元,DeepSeek等开源模型已取得世界领先地位[34][35] - 美国面临开源与闭源路线选择,顶级模型多为闭源,但大学应继续推动开源创新[36][37] - 硬件瓶颈将成为未来十年主要限制因素,电力资源和系统构建能力是关键挑战[40] 技术发展趋势 - AI核心竞争力在于系统持续学习和自我演化能力,学习速度最快者将获胜[9][15] - 强化学习是当前最难也最有前景的方向,特别是控制AI规划能力的发展[42][44] - 三大技术趋势驱动AI进步:缩放定律、强化学习规划、测试时计算[28] - 基础模型可应用于各学科领域,将知识体系化并实现问题建模与解答[43] 公司运营与管理 - 初创公司成功需同时满足多个条件:正确时机、真实市场需求、强大技术方案[14] - 谷歌成功靠两大支柱:PageRank搜索引擎技术和AdSense广告拍卖系统[15] - 招聘顶尖人才需强调解决重要难题的机会而非金钱或头衔[17][19] - 组织管理中应给予人才短期项目测试其能力,工程管理者需随时掌握项目细节[22] 全球AI治理挑战 - 超级智能系统可能带来灭绝性威胁,需要建立人类与AI共处的思维体系[32][33] - 开源模型面临安全监管难题,需平衡代码公开与防止有害信息传播[38] - 中美在AI领域形成竞争格局,中国开源方案可能吸引多数国家采用[38][41]