换手率因子

搜索文档
换手率变化率的稳定GTR选股因子绩效月报20250731-20250806
东吴证券· 2025-08-06 11:34
量化因子与构建方式 1. **因子名称**:换手率变化率的稳定GTR因子 - **构建思路**:通过捕捉换手率波动率高的股票中换手率稳定增长或下降的趋势,构建描述换手率变化率稳定性的指标[6] - **具体构建过程**: 1. 计算换手率的变化率(加速度意义) 2. 对变化率的稳定性进行量化(未披露具体公式,但强调其与东吴金工全系列换手率因子相关性低于0.1)[6] - **因子评价**:与现有换手率因子互补性强,且能增强其他换手率因子的选股能力[6] 2. **因子名称**:纯净优加TPS_Turbo因子 - **构建思路**:将GTR因子与Turn20因子通过纯净优加法合成,增强选股能力[6] - **具体构建过程**: 1. 采用纯净优加法(Pure Plus Method)合成GTR与Turn20因子 2. 具体公式未披露,但参考历史报告《成交价改进换手率》中的SPS因子构建方法[6] 3. **因子名称**:纯净优加SPS_Turbo因子 - **构建思路**:将GTR因子与STR因子通过纯净优加法合成,提升稳定性[6] - **具体构建过程**: 1. 类似TPS_Turbo,但合成对象为STR因子 2. 同样基于纯净优加法,保留因子的正交性和增强效果[6] 因子的回测效果 1. **GTR因子**(2006/01-2025/07全市场测试) - 年化收益率:13.29% - 年化波动率:10.24% - 信息比率(IR):1.30 - 月度胜率:67.09% - 最大回撤率:10.81%[7][11] 2. **TPS_Turbo因子**(2006/01-2025/07全市场测试) - 年化收益率:36.31% - 年化波动率:13.21% - 信息比率(IR):2.75 - 月度胜率:78.63% - 最大回撤率:9.86%[7][11] 3. **SPS_Turbo因子**(2006/01-2025/07全市场测试) - 年化收益率:37.33% - 年化波动率:10.88% - 信息比率(IR):3.43 - 月度胜率:81.62% - 最大回撤率:7.22%[7][11] 短期表现(2025年7月) - **GTR因子**: - 多头收益率:0.96% - 空头收益率:0.36% - 多空对冲收益率:0.60%[14] - **TPS_Turbo因子**: - 多头收益率:1.15% - 空头收益率:0.03% - 多空对冲收益率:1.12%[15] - **SPS_Turbo因子**: - 多头收益率:1.17% - 空头收益率:0.11% - 多空对冲收益率:1.06%[19]
因子跟踪周报:换手率、季度sp分位数因子表现较好-20250524
天风证券· 2025-05-24 16:04
量化因子与构建方式 估值类因子 1. **因子名称**:bp - **构建思路**:衡量净资产与市值的相对关系[13] - **构建过程**:$$ bp = \frac{当前净资产}{当前总市值} $$[13] 2. **因子名称**:bp三年分位数 - **构建思路**:反映当前bp在近三年的分位水平[13] - **构建过程**:计算股票当前bp在最近三年的分位数[13] 3. **因子名称**:季度ep - **构建思路**:衡量季度净利润与净资产的关系[13] - **构建过程**:$$ 季度ep = \frac{季度净利润}{净资产} $$[13] 4. **因子名称**:季度sp - **构建思路**:衡量季度营收与净资产的关系[13] - **构建过程**:$$ 季度sp = \frac{季度营业收入}{净资产} $$[13] 盈利类因子 5. **因子名称**:季度roa - **构建思路**:反映净利润与总资产的效率关系[13] - **构建过程**:$$ 季度roa = \frac{季度净利润}{总资产} $$[13] 6. **因子名称**:季度roe - **构建思路**:衡量净利润与净资产的效率关系[13] - **构建过程**:$$ 季度roe = \frac{季度净利润}{净资产} $$[13] 成长类因子 7. **因子名称**:标准化预期外盈利 - **构建思路**:量化实际盈利与预期盈利的偏离程度[13] - **构建过程**:$$ \frac{当前季度净利润 - (去年同期单季净利润 + 过去8个季度单季净利润同比增长均值)}{过去8个季度单季净利润同比增长值的标准差} $$[13] 换手率类因子 8. **因子名称**:1个月非流动性冲击 - **构建思路**:衡量收益率绝对值与成交量的关系[13] - **构建过程**:过去20个交易日日收益率绝对值与日成交量之比的均值[13] 9. **因子名称**:1个月换手率波动 - **构建思路**:反映换手率的波动性[13] - **构建过程**:过去20个交易日换手率的标准差[13] 波动率类因子 10. **因子名称**:Fama-French三因子1月残差波动率 - **构建思路**:衡量个股收益对三因子模型残差的波动[13] - **构建过程**:过去20个交易日日收益对Fama-French三因子回归的残差标准差[13] 动量与反转类因子 11. **因子名称**:1个月反转 - **构建思路**:捕捉短期反转效应[13] - **构建过程**:过去20个交易日收益率累加[13] 因子回测效果 IC表现 1. **bp因子**:最近一周IC 0.60%,最近一月IC均值-0.14%,最近一年IC均值1.68%[9] 2. **1个月非流动性冲击因子**:最近一周IC 8.83%,最近一月IC均值4.44%,最近一年IC均值0.85%[9] 3. **小市值因子**:最近一月IC均值10.11%,最近一年IC均值3.66%[9] 多头组合表现 1. **1个月非流动性冲击因子**:最近一周超额收益显著[10] 2. **小市值因子**:最近一月超额收益10.11%[10] 3. **1个月换手率波动因子**:最近一年超额收益2.77%[10] 因子评价 - **小市值因子**:长期表现稳定,但易受市场风格切换影响[9][10] - **换手率类因子**:短期有效性高,但需注意流动性风险[9][10] - **标准化预期外盈利因子**:对盈利惊喜敏感,但受分析师预期分歧干扰[13] (注:部分因子未提及具体评价,故未列出)
因子跟踪周报:Beta、换手率因子表现较好-20250504
天风证券· 2025-05-04 21:01
量化因子与构建方式 1.估值类因子 1) **bp因子** - 构建思路:衡量股票当前市净率水平[13] - 具体构建:$$ bp = \frac{当前净资产}{当前总市值} $$[13] 2) **bp三年分位数因子** - 构建思路:评估当前市净率在近三年的相对位置[13] - 具体构建:计算股票当前bp在最近三年的分位数[13] 3) **季度ep因子** - 构建思路:反映季度净利润与净资产的关系[13] - 具体构建:$$ 季度ep = \frac{季度净利润}{净资产} $$[13] 4) **季度sp因子** - 构建思路:衡量季度营业收入与净资产的关系[13] - 具体构建:$$ 季度sp = \frac{季度营业收入}{净资产} $$[13] 2.盈利类因子 1) **季度roa因子** - 构建思路:评估季度净利润与总资产的比率[13] - 具体构建:$$ 季度roa = \frac{季度净利润}{总资产} $$[13] 2) **季度roe因子** - 构建思路:衡量季度净利润与净资产的比率[13] - 具体构建:$$ 季度roe = \frac{季度净利润}{净资产} $$[13] 3.成长类因子 1) **季度净利润同比增长因子** - 构建思路:反映季度净利润的同比增长情况[13] - 具体构建:直接计算季度净利润同比增长率[13] 2) **标准化预期外盈利因子** - 构建思路:衡量实际盈利与预期盈利的偏离程度[13] - 具体构建: $$ \frac{当前季度净利润 - (去年同期单季净利润 + 过去8个季度单季净利润同比增长均值)}{过去8个季度的单季度净利润同比增长值的标准差} $$[13] 4.换手率类因子 1) **1个月换手率与均价的相关性因子** - 构建思路:评估换手率与股价的相关性[13] - 具体构建:计算过去20个交易日换手率与均价的相关系数[13] 2) **1个月换手率波动因子** - 构建思路:衡量换手率的波动性[13] - 具体构建:计算过去20个交易日换手率的标准差[13] 5.波动率类因子 1) **Fama-French三因子1月残差波动率因子** - 构建思路:衡量股票收益对三因子模型的残差波动[13] - 具体构建:对过去20个交易日日收益进行Fama-French三因子回归,取残差标准差[13] 2) **1月特异度因子** - 构建思路:评估股票收益中未被三因子解释的部分[13] - 具体构建:$$ 1 - R^2 \ (Fama-French三因子回归的R方) $$[13] 6.动量与反转类因子 1) **一年动量因子** - 构建思路:捕捉长期动量效应[13] - 具体构建:$$ 过去一年收益率累加 - 过去一个月收益率累加 $$[13] 2) **1个月反转因子** - 构建思路:捕捉短期反转效应[13] - 具体构建:累加过去20个交易日收益率[13] 7.规模类因子 1) **小市值因子** - 构建思路:衡量公司规模对收益的影响[13] - 具体构建:对数市值[13] 8.Beta因子 1) **Beta因子** - 构建思路:衡量股票与市场的系统性风险关联[14] - 具体构建:最近490个交易日个股收益与市场收益加权回归的系数[14] --- 因子回测效果 1.IC表现 - **bp因子**:最近一周IC -6.07%,最近一月IC均值 -0.91%,历史IC均值 2.07%[9] - **1个月换手率与均价的相关性因子**:最近一周IC 11.30%,最近一月IC均值 7.07%,历史IC均值 1.70%[9] - **1个月反转因子**:最近一周IC 11.08%,最近一月IC均值 4.52%,历史IC均值 2.15%[9] 2.多头组合表现 - **小市值因子**:最近一年超额收益 10.84%,历史累计超额 59.20%[11] - **1个月换手率波动因子**:最近一年超额收益 10.68%,历史累计超额 32.01%[11] - **Beta因子**:最近一周超额 1.08%,最近一年超额 6.46%[11] --- 数据处理方法 - 因子值基于最近五年周频数据,先转为行业内排序分位数,并对市值、bp和行业进行中性化处理(规模类和bp因子除外)[7] - 多头组合构建:每期选择因子排名前10%的股票,采用根号下流通市值加权[10]