Workflow
自动驾驶世界模型
icon
搜索文档
自动驾驶前沿方案:从端到端到VLA工作一览
自动驾驶之心· 2025-08-10 11:31
自动驾驶技术趋势 - 端到端自动驾驶方案分为一段式和二段式,一段式直接建模传感器输入到轨迹输出,二段式侧重感知输入与轨迹预测联合优化 [3] - 主流一段式方案包括基于感知的UniAD、基于扩散模型的DiffusionDrive、基于世界模型的Drive-OccWorld,量产中会融合多种方法优势 [3] - VLA(视觉语言模型+端到端)通过大模型提升场景理解能力,当前研究涵盖语言解释器、模块化VLA、端到端VLA及推理增强算法 [5] 技术资源体系 - 社区整合40+技术路线,覆盖VLA benchmark、综述、入门路线及产业项目方案 [7][15] - 汇总60+自动驾驶数据集,包括多模态大模型预训练/微调数据集、强化学习数据集等 [35] - 梳理近40+开源项目,涉及3D目标检测、BEV感知、世界模型、3DGS等前沿领域 [33] 行业生态与人才 - 社区成员来自国内外顶尖高校(清华、CMU、ETH等)及头部企业(蔚小理、华为、英伟达等) [19] - 建立企业内推机制,覆盖RoboTaxi、重卡、造车新势力等自动驾驶相关公司 [10][29] - 定期举办100+场技术直播,分享VLA、3D检测、扩散模型等最新研究成果 [82] 关键技术研究方向 - 端到端自动驾驶研究聚焦纯视觉/多模态方案、世界模型结合、长尾分布处理等细分方向 [26][37] - 世界模型应用涵盖场景生成、交通仿真、传感器仿真等技术落地路径 [26][41] - BEV感知作为量产基石,覆盖纯视觉/多模态方案及工程部署优化 [50] - 3D目标检测技术路线包括激光点云、单目/双目视觉、多模态融合等方法 [52]
4000人了,死磕技术的自动驾驶黄埔军校到底做了哪些事情?
自动驾驶之心· 2025-07-31 14:19
社区定位与愿景 - 打造国内首个自动驾驶全栈技术交流平台,连接产业界与学术界,形成学术、产业、求职的闭环生态 [13] - 愿景是推动AI与自动驾驶技术普及,让相关资源触达每位有需求的学习者 [1] - 社区定位为培养未来行业领袖的孵化器,强调内容质量与实用性,避免形式化运营 [3] 核心资源体系 - **技术路线**:梳理40+技术路线,覆盖感知、仿真、规划控制三大方向,包括BEV感知、3DGS、世界模型等前沿领域 [14][15] - **学习资料**:提供原创视频课程(如数据工程、VLA技术等9大系列)、60+数据集、40+开源项目及行业书籍 [4][25][27][23] - **专家网络**:聚集数十位来自头部企业(蔚小理、华为、英伟达等)和顶尖高校(清华、CMU、ETH等)的一线专家 [14] 行业服务功能 - **求职对接**:与多家自动驾驶公司建立内推机制,实时分享实习/校招/社招岗位信息 [4][11][17] - **技术研讨**:组织超100场专业直播,内容涵盖VLA、3DGS、扩散模型等热点,部分场次由顶会论文作者主讲 [74] - **问题解答**:成员可自由提问技术难题(如3D车道线真值生成、BEV精度优化等),获得产业界实战解决方案 [75][79] 前沿领域覆盖 - **关键技术**:深度聚焦VLA(视觉语言模型)、端到端自动驾驶、世界模型等2025年重点方向,提供数据集、算法及量产方案 [35][37][29][33] - **工具链**:整合标定工具、CUDA加速、模型部署等工程化内容,覆盖从研发到落地的全流程 [55][59][61] - **创新应用**:探索3DGS与闭环仿真结合、扩散模型在场景重建中的应用等交叉领域 [31][40] 成员生态 - **用户构成**:成员来自上海交大、CMU等高校实验室及蔚来、大疆等企业,形成产学研协同网络 [14] - **互动模式**:通过圆桌讨论、开源项目协作、日常技术问答(如激光雷达数据处理)促进深度交流 [2][77][79] - **成长路径**:为小白提供入门路线图,为进阶者设计产业级项目方案,实现技术能力阶梯式提升 [8][10]
分钟级长视频生成!地平线Epona:自回归扩散式的端到端自动驾驶世界模型(ICCV'25)
自动驾驶之心· 2025-07-07 20:17
自动驾驶世界模型Epona的核心创新 - 提出自回归扩散世界模型框架Epona,融合扩散模型与自回归模型优势,支持分钟级长视频生成、轨迹控制生成和实时运动规划[1][2] - 两项关键架构创新:解耦时空分解(分离时间动态建模与细粒度生成)、模块化轨迹与视频预测(端到端整合运动规划与视觉建模)[2][18] - 引入链式前向训练策略(CoF),解决自回归误差累积问题,FVD指标提升7.4%,支持600帧(2分钟)长视频生成[23][26][29] 技术架构与性能表现 - **解耦设计**:时序建模采用多模态时空Transformer(MST),空间生成采用双-单流DiT结构,支持逐帧自回归生成[20] - **多模态生成**:TrajDiT分支生成3秒连续轨迹(20Hz实时),VisDiT分支生成下一帧图像(4090 GPU上2秒/帧)[21][25] - **基准测试优势**:在NuPlan数据集上FVD降至82.8(优于Vista的89.4),NAVSIM轨迹预测碰撞率0.36%(优于UniAD的0.31%)[29][30] 行业应用价值 - 突破现有世界模型局限:解决传统视频扩散模型固定长度限制(如GAIA-2)与自回归Transformer模型离散token质量损失(如GAIA-1)[15] - 支持实际场景需求:可应用于轨迹控制视频生成(定制化驾驶模拟)和轻量化实时规划(仅启用TrajDiT分支)[21][28] - 参数量2.5B,计算效率优于NVIDIA Cosmos等同类模型,在消费级硬件(4090)上可部署[25][32] 行业技术趋势 - 世界模型成为下一代端到端自动驾驶关键路径,减少对感知模块与标注数据的依赖[6] - 自回归+扩散的混合架构成为前沿方向,Epona首次实现连续表征下的长序列自回归生成[9][33] - 当前行业痛点包括长时序一致性(如Cosmos限于短视频)与实时规划能力(如Vista缺乏轨迹控制),Epona提供统一解决方案[17][26][32]
理想新一代世界模型首次实现实时场景编辑与VLA协同规划
理想TOP2· 2025-06-11 10:59
核心观点 - GeoDrive是由北京大学、伯克利人工智能研究院与理想汽车联合开发的自动驾驶世界模型系统,首创性地将三维点云渲染过程纳入生成范式,显著提升空间一致性与可控性 [11] - 模型在轨迹跟踪误差上降低42%,视频质量指标(LPIPS/PSNR/SSIM/FID/FVD)全面超越Vista等基线模型,且仅需5小时训练数据(对比基线1740小时) [19][34] - 首次实现实时视觉输入与预测建模的融合,构建支持VLA(视觉-语言-动作)协同规划的交互式仿真环境 [9][10] 技术创新 几何驱动架构 - 采用MonST3R网络从单帧RGB图像精准估计点云和相机位姿,在动态城市场景中减少38%姿态误差 [26][27] - 通过投影几何技术将3D点云沿用户指定轨迹渲染,使用z-buffering处理遮挡,生成几何引导信号 [28][29] 动态编辑机制 - 突破静态渲染局限,通过2D边界框注释调整可移动物体位置,增强多车交互场景的动态合理性 [12][31] - 设计物理引导编辑模块,在明确运动约束下变换代理外观,确保物理合理的交互 [18][31] 训练优化 - 采用冻结主干模型+轻量化适配器架构,仅需5小时训练数据即达到SOTA性能(对比DriveDreamer等模型需1740小时) [8][34][37] - 双分支控制策略:条件编码器提取渲染潜变量特征,以结构化方式选择性融合进冻结DiT主干,保持3D结构保真度 [33] 性能表现 定量指标 - 在NuScenes数据集上,FID指标达4.1(对比Vista 6.6/GEM 10.5),FVD指标61.6(对比Vista 167.7) [37] - 新视角合成任务中,左移3米轨迹的FID 67.13/FVD 1245.23,显著优于StreetGaussian的63.84/1438.89 [40] 定性优势 - 生成视频的光流误差(ADE)仅1.62×10²,较Vista(2.77×10²)降低41.5% [34] - 在遮挡处理和动态物体交互合理性上优于基线,避免Vista模型出现的轨迹错位和碰撞问题 [35][36] 行业意义 - 首次实现驾驶世界模型中实时场景编辑与VLA协同规划,支持动态物体插入/替换/运动控制等交互功能 [9][10] - 为自动驾驶仿真测试提供高保真环境生成方案,解决传统方法在3D几何一致性和遮挡处理上的缺陷 [14][17] - 验证了轻量化适配器+冻结主干的训练范式在数据效率上的突破,降低行业研发门槛 [8][34]