视觉语言模型(VLM)

搜索文档
自动驾驶VLA工作汇总(模块化/端到端/推理增强)
自动驾驶之心· 2025-08-12 19:42
点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近15个 方向 学习 路线 VLA前置工作:VLM作为解释器 论文标题:DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model 论文链接:https://arxiv.org/abs/2310.01412 主页:https://tonyxuqaq.github.io/projects/DriveGPT4/ 论文标题:TS-VLM: Text-Guided SoftSort Pooling for Vision-Language Models in Multi-View Driving Reasoning 论文链接:https://arxiv.org/abs/2505.12670 主页:https://github.com/AiX-Lab-UWO/TS-VLM 论文标题:DynRsl-VLM: Enhancing Autonomous Driving Perception with Dynamic Resolution Vision- L ...
本来决定去具身,现在有点犹豫了。。。
自动驾驶之心· 2025-08-11 20:17
点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近15个 方向 学习 路线 具身智能无疑是今年最热的方向。从几年前的沉寂到去年的疯狂,再到25上半年开始逐渐冷静。大家慢慢回过神来,具身机器人还远远未到生产力的阶段。 (向峰哥和柱哥提问,欢迎加入『自动驾驶之心知识星球』) 以下是知识星球内部一位双非同学的提问,非常有代表性: 各位大佬们好,我目前是一个双非的研究生,我的研究方向是多传感器融合定位的,然后学过python,深度学习,ros,但都学的不是很精,现在想多学一点为 以后找工作用,感觉算法岗我的学历可能不太行,请问各位大佬们我应该往哪个方向学比较好呢?具身智能感觉也还不太成熟,不确定这波热度能到什么时 候?请问各位大佬后面应该学些什么知识呢? 星主回答:你的技术栈都比较偏机器人一些,SLAM和ROS这块都可以尝试一下和机器人/具身智能打交道。这块需求也比较大,可以做一些优化、集成类工作~另 一方面,我们了解到大一些的公司各家的hc都不是很高,要求基本上都是端到端、大模型、VLA、强化学习、3DGS这些比较前沿的方向。如果你做的是这块,是 有机会的,很多tire 1的公司或者主机厂 ...
「一只手有几根手指」,你的GPT-5答对了吗?
机器之心· 2025-08-11 18:40
机器之心报道 编辑:杜伟、+0 「一只手有几根手指?」 这个看似简单的问题,强如 GPT-5 却并不能总是答对。 今天,CMU 博士生、英伟达 GEAR(通用具身智能体研究)团队成员 Tairan He(何泰然)向 GPT- 5 询问了这个问题,结果模型回答错了。 他接着延伸出一个论点: 语言虽然是强大的工具,但却很难完全满足视觉与机器人领域的需求。 我们更需要以视觉为中心的视觉语言模型(VLM)以及以视觉-动作为中心的 VLA 模型。 看起来,这里 Tairan He 对 Fingers 的定义应该是「包括拇指在内所有的手指」。 在英文语境中(包括柯林斯词典、词源词典等的解释),Fingers 既可以指代除拇指以外的其余四指, 也可以指代包括拇指在内的全部五指。 图源:柯林斯词典 图源:词源词典 不只是 GPT-5,推理版本 GPT-5-Thinking 也犯错了,「包括拇指在内 5 根手指,不包括拇指则 4 根手指」。 此前,在 Grok 4 推出之后,同样有人用数手指问题来测试它,结果 同样翻车 。 实测: 时对时错,Gemini 2.5 Pro 也未能幸免 有趣的是,在认定 手指(finger)包含拇 ...
自动驾驶二十年,这个自动驾驶黄埔军校一直在精打细磨...
自动驾驶之心· 2025-08-10 00:03
点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近15个 方向 学习 路线 自从2009年, 谷歌开启自动驾驶技术研发热潮(现称 Waymo ), 自动驾驶发展近二十年了,当下正处于行业下沉的关键期。 一路走来,从模块化方法到现在的端到端/VLA方法,伴随着智驾能力的不断攀升,我们对实现真正的自动驾驶也抱有更高的期待,真心希望智能驾驶可以融入 我们日常的出行当中。在这期间,我们也一直在紧跟自动驾驶前沿。我们一直精打细磨的知识星球到目前为止已经完成了产业、学术、求职、问答交流等多个领 域的闭环。几个运营的小伙伴每天都在复盘,什么样的社区才是大家需要的?刚入行的小白如何快速入门?有基础的同学如何持续提升?转行的小伙伴如何有效 学习?我们做了很多很多...... 未来我们计划继续优化星球内容,今天也和大家汇报一下:打算开展一个星友面对面的模块,争取每个月线上和大家一起聊聊,针对共性的问题一起探讨下。未 来还将持续邀请邀请学术界和工业界的大佬做一些有深度的圆桌访谈! 我们是一个认真做内容的社区,一个培养未来领袖的地方。自动驾驶之心一直致力在推动行业发展,成为企业和高校沟通的桥梁。我们的愿景是 ...
自动驾驶大模型方案:视觉语言模型VLM工作一览,面向量产和研究~
自动驾驶之心· 2025-08-07 07:34
视觉语言模型在自动驾驶中的应用 - 视觉语言模型(VLM)通过跨模态理解能力赋能自动驾驶系统,使其从"看得清"升级为"懂得深",实现场景理解和推理[2][3] - VLM在环境感知方面能识别复杂语义信息,如"行人挥手示意过马路"、"车辆打开双闪可能抛锚"等,提供更贴近人类认知的环境模型[6] - VLM可将视觉场景转化为自然语言描述,增强自动驾驶决策的可解释性,帮助开发调试并提升乘客信任感[6] - 在智能座舱交互中,VLM能准确理解口语化指令如"在下一个便利店靠边停",实现自然语言交互[6] 自动驾驶场景生成技术 - CrashAgent框架利用多模态大语言模型将事故报告转换为结构化场景,生成高质量碰撞数据集支持安全关键场景算法开发[7] - CurricuVLM利用VLM分析智能体行为并动态生成个性化训练场景,在Waymo数据集上导航成功率提升至73.4%,碰撞率降至25.1%[13][15] - TRACE框架从真实车祸报告生成测试场景,在290个场景中识别127个关键场景,重建准确率达77.5%,显著优于基线方法27%的准确率[17][19] - OmniTester利用多模态大语言模型生成高真实性测试场景,在复杂挑战性场景中展现优异可控性[30][32] 自动驾驶边缘案例处理 - 生成OOD场景的框架利用LLM构建分支树结构,在CARLA仿真器中实现多样化边缘场景,引入"OOD偏离度"指标量化场景异常程度[21][22] - WEDGE数据集包含3360张极端天气图像,用于微调检测器后在真实基准上提升4.48 AP,特别在卡车类别表现良好[39][41] - From Dashcam Videos框架将行车记录仪视频自动转换为仿真场景,保持高保真度同时实现分钟级转换效率[26][29] - INSIGHT框架整合语义和视觉表征,在BDD100K数据集上危险预测准确率显著提升,BLEU-4达88.087%[95][97] 自动驾驶评估与基准 - DriveBench基准评估12个主流VLM在19,200帧数据上的可靠性,发现模型常依赖文本线索而非真正视觉理解,存在安全风险[119][124] - CODA-LM是首个自动驾驶极端场景下LVLM自动评估基准,其CODA-VLM模型在区域感知任务上超过GPT-4V达21.42%[133][135] - Reason2Drive数据集包含60万视频-文本对,描述感知-预测-推理链条,Vicuna-7B模型推理指标达0.463[152][154] - OmniDrive数据集通过反事实推理增强3D理解,Omni-Q++模型在nuScenes规划任务上碰撞率降至0.3%[158][162] 自动驾驶决策与规划 - CBR-LLM框架结合案例推理和LLM,在风险场景中生成符合人类行为的机动建议,决策准确性显著提升[44][47] - FutureSightDrive提出时空思维链推理方法,通过生成未来帧预测进行轨迹规划,推动视觉推理发展[49][52] - ThinkDriver模型利用多视角图像生成可解释驾驶决策,在闭环实验中优于其他VLM基线[140][143] - LLM-Augmented-MTR使用0.7%的LLM增强数据即提升运动预测准确性,mAP从0.3432提升至0.3527[144][149]
4000人了,死磕技术的自动驾驶黄埔军校到底做了哪些事情?
自动驾驶之心· 2025-07-31 14:19
社区定位与愿景 - 打造国内首个自动驾驶全栈技术交流平台,连接产业界与学术界,形成学术、产业、求职的闭环生态 [13] - 愿景是推动AI与自动驾驶技术普及,让相关资源触达每位有需求的学习者 [1] - 社区定位为培养未来行业领袖的孵化器,强调内容质量与实用性,避免形式化运营 [3] 核心资源体系 - **技术路线**:梳理40+技术路线,覆盖感知、仿真、规划控制三大方向,包括BEV感知、3DGS、世界模型等前沿领域 [14][15] - **学习资料**:提供原创视频课程(如数据工程、VLA技术等9大系列)、60+数据集、40+开源项目及行业书籍 [4][25][27][23] - **专家网络**:聚集数十位来自头部企业(蔚小理、华为、英伟达等)和顶尖高校(清华、CMU、ETH等)的一线专家 [14] 行业服务功能 - **求职对接**:与多家自动驾驶公司建立内推机制,实时分享实习/校招/社招岗位信息 [4][11][17] - **技术研讨**:组织超100场专业直播,内容涵盖VLA、3DGS、扩散模型等热点,部分场次由顶会论文作者主讲 [74] - **问题解答**:成员可自由提问技术难题(如3D车道线真值生成、BEV精度优化等),获得产业界实战解决方案 [75][79] 前沿领域覆盖 - **关键技术**:深度聚焦VLA(视觉语言模型)、端到端自动驾驶、世界模型等2025年重点方向,提供数据集、算法及量产方案 [35][37][29][33] - **工具链**:整合标定工具、CUDA加速、模型部署等工程化内容,覆盖从研发到落地的全流程 [55][59][61] - **创新应用**:探索3DGS与闭环仿真结合、扩散模型在场景重建中的应用等交叉领域 [31][40] 成员生态 - **用户构成**:成员来自上海交大、CMU等高校实验室及蔚来、大疆等企业,形成产学研协同网络 [14] - **互动模式**:通过圆桌讨论、开源项目协作、日常技术问答(如激光雷达数据处理)促进深度交流 [2][77][79] - **成长路径**:为小白提供入门路线图,为进阶者设计产业级项目方案,实现技术能力阶梯式提升 [8][10]
中科院自动化所!视觉-触觉-语言-动作模型方案与数据集制作分享
具身智能之心· 2025-07-30 08:02
视觉-触觉-语言-动作模型(VTLA)技术突破 - 提出VTLA框架 通过跨模态语言对齐融合视觉与触觉输入 在接触密集型任务中生成鲁棒策略 [2] - 构建低成本多模态数据集 包含专为指尖插入任务设计的视觉-触觉-动作-指令对 [2] - 引入直接偏好优化(DPO) 为VTLA提供类回归监督 弥合分类预测与连续机器人任务间的差距 [2] VTLA性能表现 - 在未知孔型上成功率超过90% 显著优于传统模仿学习方法(如扩散策略)及现有多模态基线(TLA/VLA) [2] - 通过真实世界孔轴装配实验验证卓越的仿真到现实(Sim2Real)迁移能力 [2] 相关技术资源 - 论文标题《VTLA: Vision-Tactile-Language-Action Model with Preference Learning for Insertion Manipulation》发布于arXiv [3] - 知识星球「具身智能之心」提供完整技术细节 QA及未公开彩蛋 包含VR-Robo BridgeVLA等机器人领域前沿方案 [4]
看遍奥斯卡后,VLM达到电影摄影理解新SOTA|上海AI Lab开源
量子位· 2025-07-16 09:49
视觉语言模型(VLMs)在电影理解领域的突破 - 当前最强大的VLMs在理解电影方面存在局限性,平均准确率低于60%,尤其在细粒度视觉线索和复杂空间推理方面表现不佳 [1][3][6] - 上海人工智能实验室联合多所高校推出ShotBench基准、ShotVL模型及ShotQA数据集,填补了电影摄影语言理解的评测与训练空白 [1][3] - ShotBench包含3,572个高质量问答对,覆盖8个关键电影摄影维度,数据来自200多部奥斯卡提名电影 [1][8][14] ShotBench基准的特点 - 基准包含超过3.5k个专家标注的图像和视频片段问答对 [1] - 涵盖八个核心电影摄影维度:景别、取景构图、摄像机角度、镜头焦距、照明类型、照明条件、构图和摄像机运动 [1][11][16] - 采用严格的数据标注流程,结合专业标注员和专家监督确保数据质量 [8][9][10] ShotQA数据集与ShotVL模型 - ShotQA包含约7万个电影问答对,是首个大规模综合摄影语言理解数据集 [1][15] - ShotVL采用两阶段训练流程:大规模监督微调(SFT)和群体相对策略优化(GRPO) [15][19][20] - ShotVL-3B模型在ShotBench上平均准确率达65.1%,超越GPT-4o(59.3%)和Qwen2.5-VL-72B-Instruct(59.1%) [3][24][25] 模型性能比较 - 在24个主流VLM评测中,表现最好的现有模型平均准确率不足60% [3][6] - ShotVL-3B相比基础模型Qwen2.5-VL-3B-Instruct平均提升19.0% [3][24] - 开源模型与专有模型之间的总体性能差异微乎其微 [21] 技术实现细节 - 数据来源于奥斯卡最佳摄影奖提名电影,包含3,049张图片和464个视频片段 [8][14] - 标注流程包括数据策展、标注员培训、QA标注和严格验证 [9][10][14] - 两阶段训练中,GRPO策略显著提升了模型性能,尤其在摄像机运动维度 [26][27][28] 行业影响与开源贡献 - 该研究为AI驱动的电影理解和生成领域提供了专业模型基座 [29] - 团队开源了模型、数据和代码,促进该领域快速发展 [4][30] - 3B参数模型超越GPT-4o,为行业提供了高性能低成本的解决方案 [24][29]
CEED-VLA:实现VLA模型4倍推理加速,革命性一致性蒸馏与早退解码技术!
具身智能之心· 2025-07-10 21:16
视觉语言动作模型(VLA)加速技术 - 提出CEED-VLA框架,通过Jacobi Decoding和Early-exit Decoding策略实现推理速度提升,最高达4.1倍加速比和执行频率4.3倍提升 [2][6][15] - 引入一致性蒸馏机制与混合标签监督方法,确保学生模型从中间状态准确预测动作,保留操作技能 [9][11][13] - 识别Jacobi解码迭代效率瓶颈,通过提前退出策略优化高频任务执行,保持成功率的同时减少冗余计算 [15][20] 模型架构与训练方法 - 框架基于预训练VLA模型(如LLaVA-VLA)生成训练数据,结合一致性损失(KL散度)和自回归损失进行联合优化 [6][12][14] - 混合标签监督动态调整样本标签,对偏差较大样本采用真实标签,提升模型鲁棒性 [13][19] - 消融实验显示混合标签方案速度提升2倍,平均预测长度3.67,优于纯教师模型或真实标签方案 [19][21] 性能评估结果 - 在CALVIN基准测试中,CEED-VLA固定token数达13.5,速度提升2倍,显著优于PD-VLA(8.75 token,1.33倍)和基线模型 [20] - 真实世界任务(如叠毛巾)成功率超70%,机械臂动作连续性优于LLaVA-VLA,后者因低频控制常出现抓取失败 [30][31] - LIBERO LONG基准测试显示,模型在长序列任务中保持高效执行,任务完成率与推理速度同步优化 [22][23] 技术对比与创新 - Jacobi解码并行输出token但收敛条件严格,Early-exit策略通过预设步数提前输出,利用后期token变化微小特性提升效率 [15] - 一致性训练使中间点收敛至固定点,KL散度约束分布差异,自回归损失继承教师模型能力 [9][12][14] - 开源代码与Arxiv论文提供完整实现细节,包括轨迹收集、蒸馏流程和解码优化 [4][6]
AI 开始「自由玩电脑」了!吉大提出「屏幕探索者」智能体
机器之心· 2025-06-27 12:02
研究背景与目标 - 研究聚焦于开发能在开放世界图形用户界面(GUI)中自主探索的智能体,这是实现通用人工智能(AGI)的关键路径之一 [2] - 当前大语言模型(LLMs)和视觉语言模型(VLMs)已展现出跨领域任务泛化能力,为GUI智能体开发奠定基础 [2] - 吉林大学团队提出《ScreenExplorer》项目,旨在训练视觉语言模型实现GUI环境自主探索 [3] 方法论创新 - 构建实时交互的在线强化学习框架,智能体通过鼠标/键盘函数调用与真实GUI环境交互 [10][11] - 引入"好奇心机制"解决开放环境反馈稀疏问题,利用世界模型预测状态转移并估算新颖度 [10] - 采用"经验流蒸馏"训练范式,将每代智能体探索经验自动提炼用于下一代微调 [10] - 设计启发式+世界模型驱动的奖励体系,包含轨迹差异奖励、好奇心奖励、格式奖励和意图对齐奖励 [12] - 采用GRPO算法进行强化学习训练,实现多环境并行推理与实时策略更新 [14][15] 实验结果 基础模型表现 - 未经训练的Qwen2 5-VL-3B模型仅能随机点击屏幕,无法打开任何软件 [17] - 经过初步训练后,3B模型可成功打开桌面软件,7B模型能完成"加购物车"完整流程 [18][20] 性能对比 - ScreenExplorer-3B-E1训练后探索多样性达0 51,显著优于基础模型Qwen2 5-VL-3B的0 21 [23] - 7B版本ScreenExplorer-7B-E1表现更优,探索多样性达0 54,超过专用GUI模型doubao-1 5-ui-tars的0 45 [23] - 世界模型好奇心奖励对训练至关重要,去除后模型无法突破冷启动阶段 [26][28] 涌现能力 - 训练后智能体展现出跨模态翻译、现状计划制定和复杂推理等新能力 [29][32][34] - 探索产生的"意图"字段可自动生成标注数据,为后续任务训练提供基础 [34] 技术价值 - 首次实现视觉语言模型在真实GUI环境中的自主探索训练 [35] - 经验流蒸馏技术显著降低对人工标注数据的依赖,实现能力自主进化 [10][35] - 为开发更自主的智能体和实现AGI提供了可行的技术路径 [35]