Workflow
自动驾驶之心知识星球
icon
搜索文档
筹备了很久,下周和大家线上聊一聊~
自动驾驶之心· 2025-09-05 15:50
社区活动与交流 - 计划举办线上交流活动 针对自动驾驶多个技术方向收集问题并进行交流 [1] - 社区成员主要分布在头部自驾公司 互联网公司 Top高校实验室和传统机器人公司 形成工业界和学术界互补的态势 [3] - 社区已建立超过100场专业技术直播 邀请学术界和工业界大佬分享最新研究成果 [52] 社区规模与内容 - 自动驾驶之心知识星球目前拥有超过4000名成员 目标在未来2年内达到近万人规模 [5] - 社区内容涵盖近40个自动驾驶技术方向 包括多模态大模型 VLM 端到端自动驾驶 规划控制 多传感器融合等 [3][5] - 社区提供视频 图文 学习路线 问答和求职交流为一体的综合服务 并梳理了40+技术路线 [5] 技术资源与学习 - 汇总近40+开源项目 近60+自动驾驶数据集 行业主流仿真平台以及各类技术学习路线 [12] - 提供全栈方向学习课程 适合0基础入门 同时为进阶者提供产业体系和项目方案 [8][10] - 社区内部包含自动驾驶感知 仿真 规划控制等学习路线 以及VLA 多模态大模型等前沿技术内容 [12][13] 行业合作与就业 - 与多家自动驾驶公司建立岗位内推机制 帮助成员将简历送至心仪公司 [8] - 社区成员来自国内外知名高校和头部企业 包括上海交大 清华大学 CMU 蔚小理 地平线 华为 英伟达等 [12] - 提供求职交流 行业机会挖掘 投资与项目对接等服务 [16] 技术方向覆盖 - 详细梳理端到端自动驾驶 VLM VLA 世界模型 扩散模型 BEV感知 3D目标检测等多领域内容 [25][26][28][29][31][34][36] - 涵盖规划控制 多传感器融合 在线高精地图 Occupancy Network 轨迹预测 强化学习等关键技术 [32][37][38][40] - 包括传感器标定 模型部署 CUDA 仿真框架等工程实践内容 [7][43][46] 直播与专家分享 - 直播内容覆盖VLA 3D检测 扩散模型规划器 神经符号系统等前沿话题 [52] - 邀请学术界和工业界专家分享最新研究成果 如Impromptu VLA DetAny3D模型等 [52] - 提供超过100场专业技术直播 部分内容可反复观看 [52]
研究生开学,被大老板问懵了。。。
自动驾驶之心· 2025-09-01 11:17
社区规模与愿景 - 自动驾驶之心知识星球是一个综合类自驾社区 集视频 图文 学习路线 问答 求职交流为一体 目前成员超过4000人 预期未来2年内规模达到近万人[1] - 社区愿景是让AI与自动驾驶走进每个有需要的同学 致力于打造交流与技术分享的聚集地[1] 技术资源覆盖 - 社区梳理近40+自动驾驶技术路线 覆盖端到端 VLA 多模态大模型 数据闭环4D标注等前沿方向[1][3] - 包含近60+自动驾驶数据集 行业主流仿真平台 以及感知 仿真 规划控制等完整学习路线[14] - 汇总国内外知名高校实验室和自动驾驶公司资源 涵盖RoboTaxi 重卡业务 造车新势力等领域[26][29] 专家网络与互动 - 邀请数十位一线产业界和工业界嘉宾 包括顶会常驻专家 提供技术答疑和行业见解[3] - 不定期组织学术界与工业界大佬直播分享 目前已举办超过100场专业技术直播[58] - 建立与近300家机构及自驾公司的内推机制 直接对接企业招聘需求[10][67] 核心内容体系 - 技术方向系统覆盖BEV感知 3D目标检测 多传感器融合 世界模型 扩散模型等40+领域[5][7] - 实战板块包含模型压缩 部署优化 以及TensorRT 毫米波雷达融合等100问系列工程实践[7] - 提供全栈学习课程和入门路线图 针对0基础小白和进阶研究者分别设计学习路径[8][10] 行业趋势洞察 - 跟踪端到端自动驾驶量产应用 区分一段式/二段式技术方案并探讨工程落地难点[32][64] - 聚焦2025年热点VLA技术 系统梳理开源数据集 思维链推理及量产方案快慢双系统[36][37] - 分析世界模型 3DGS与NeRF等技术在自动驾驶仿真和感知领域的融合应用[33][39]
死磕技术的自动驾驶全栈学习社区,近40+方向技术路线~
自动驾驶之心· 2025-08-27 09:26
社区规模与愿景 - 自动驾驶之心知识星球社区目前拥有超过4000名成员 目标在未来2年内达到近万人规模 [1] - 社区愿景是让AI与自动驾驶技术普及到有需求的用户群体 打造技术交流与分享的聚集地 [1] 社区内容体系 - 社区整合视频 图文 学习路线 问答和求职交流功能 形成综合性自动驾驶社区 [1] - 已梳理近40+技术路线 覆盖端到端自动驾驶 VLA benchmark 多模态大模型等前沿方向 [2][5] - 提供全栈方向学习课程 特别适合零基础初学者快速入门 [7] - 汇总近60+自动驾驶数据集 行业主流仿真平台及各类技术学习路线 [13] 行业资源整合 - 汇集国内外知名高校实验室资源 包括上海交大 清华大学 CMU ETH等顶尖院校 [13] - 覆盖头部企业资源 包括蔚小理 地平线 华为 大疆 英伟达 Momenta等行业领导者 [13] - 建立与多家自动驾驶公司的内推机制 实现简历与岗位的快速对接 [9] 技术专题覆盖 - 深度梳理端到端自动驾驶技术 包含一段式/二段式量产方案及VLA相关算法 [27][32] - 系统整合3DGS与NeRF技术 涵盖算法原理 场景重建与仿真应用 [28] - 详细解析自动驾驶世界模型 包括技术前沿与业界应用实践 [29] - 全面覆盖BEV感知技术 包含纯视觉方案 多模态融合及工程部署方案 [36] 专家网络与互动 - 邀请数十位产业界与学术界一线专家入驻 包括经常出现在顶会和访谈中的行业领袖 [2] - 不定期组织与学术界 工业界大佬的深度对话 探讨技术发展趋势与量产痛点 [4][58] - 已举办超过100场专业技术直播分享 内容可反复观看学习 [53] 实战应用支持 - 提供模型部署优化方案 包括TensorRT模型部署 毫米波雷达融合等实战内容 [6] - 梳理Occupancy Network 轨迹预测 强化学习等关键技术点的产业体系方案 [41] - 针对多传感器融合 在线高精地图等量产关键技术进行深度解析 [39] 学习资源体系 - 汇总自动驾驶与计算机视觉领域经典书籍 涵盖数学基础 深度学习 运动规划等方向 [25] - 整理开源项目资源 覆盖3D目标检测 BEV感知 世界模型等热门领域 [25] - 提供100问系列专题 包括规划控制 BEV感知 相机标定等实用技术问答 [6]
末9硕双非本,现在有些迷茫。。。
自动驾驶之心· 2025-08-26 07:34
自动驾驶行业技术发展趋势 - 自动驾驶行业仍处于快速发展阶段 技术发展呈现曲折但持续向好的态势[2] - 具身智能和自动驾驶成为两大主流技术方向 具备机器人、规控和车辆技术背景的研究人员在这两个领域都有发展机会[2] - 视觉语言动作模型(VLA)和端到端自动驾驶是技术壁垒更高的方向 这些方向为转向大模型或具身智能领域提供更好基础[2] 自动驾驶技术社区生态 - 自动驾驶之心知识星球是目前国内最大最全的自驾学习平台 集视频、图文、学习路线、问答、求职交流为一体[2] - 社区规模已超过4000人 预期未来2年内达到近万人规模[2] - 社区与近300家机构和自动驾驶公司建立联系 提供产业、产品和求职交流平台[63] 自动驾驶技术资源体系 - 社区梳理了40+技术路线 涵盖行业应用咨询、VLA基准测试、综述和学习入门路线[3] - 汇总了近60+自动驾驶数据集 包括NuScenes、Waymo、KITTI、Lyft L5、Apollo Scape等知名数据集[19][24] - 整理了自动驾驶仿真平台资源 包括14种前端仿真和6种后端仿真工具[24] 自动驾驶人才需求与就业 - 行业对多种算法工程师需求旺盛 包括端到端模型算法工程师、感知模型算法工程师和模型效率优化工程师等[12][13][14] - 模型效率优化岗位要求承担智能驾驶系统AI模型车端推理效率优化 构建模型压缩核心算法[14] - 社区与多家自动驾驶公司建立岗位内推机制 可第一时间将简历送达心仪公司[10] 自动驾驶技术研究热点 - 端到端自动驾驶成为学术界和工业界研究热点 涵盖量产方案、最新综述和里程碑方法[30] - 3DGS和NeRF技术在自动驾驶场景重建与闭环仿真领域应用广泛[31] - 自动驾驶世界模型是当前学术界和工业界关注的重点领域[32] - 视觉语言模型(VLM)在自动驾驶领域应用包括最新综述、开源数据集和思维链推理[34] - 自动驾驶VLA成为2025年最火的技术方向 涵盖开源数据集、语言解释器算法和模块化VLA[36] 自动驾驶技术应用领域 - BEV感知成为量产方案基石 涵盖纯视觉、多模态、多任务和激光雷达等多种方案[41] - 在线高精地图是无图NOA量产方案的核心技术[44] - 多传感器融合技术包括Lidar+Camera、Radar+Camera和多种融合方法汇总[43] - 规划控制技术涵盖传统规划内容基础算法、决策规划框架和常用控制算法[38]
打算升级下技术社区,跟大家汇报一下......
自动驾驶之心· 2025-08-12 18:37
业务转型与发展 - 公司从纯线上教育转型为硬件教具、线下培训、求职招聘等全栈式服务平台 [1] - 重点开拓硬件业务、论文辅导和求职业务 [1] - 成立三周年,业务成熟度显著提升 [1] 知识星球平台建设 - 知识星球平台投入最多时间搭建和维护,覆盖产业、学术、求职、问答交流等多个领域闭环 [1] - 平台梳理近40+技术路线,涵盖VLA benchmark、综述和学习入门路线 [3] - 邀请数十位自动驾驶领域一线产业界和工业界嘉宾答疑解惑 [3] - 社区成员来自上海交大、北京大学、CMU、清华大学、蔚小理、地平线、华为等知名高校和企业 [13] - 汇总近40+开源项目、近60+自动驾驶相关数据集及行业主流仿真平台 [13] 技术内容体系 - 技术路线包括自动驾驶感知学习路线、仿真学习路线、规划控制学习路线、端到端学习路线等 [13] - 详细梳理端到端自动驾驶技术,包括一段式、二段式、量产方案及VLA相关算法 [32] - 覆盖3DGS与NeRF技术领域,包括算法原理、场景重建与仿真应用 [34] - 汇总自动驾驶世界模型技术前沿和业界应用 [36] - 整理视觉语言模型(VLM)最新综述、开源数据集及量产方案 [38] - 重点布局自动驾驶VLA领域,涵盖综述、开源数据集及量产讨论 [40] - 扩散模型应用包括数据生成、场景重建、端到端结合等 [43] - BEV感知技术梳理涵盖纯视觉、多模态、多任务及工程部署 [45] - 3D目标检测技术覆盖环视方法、range-view、voxel及多模态方向 [47] - 多传感器融合技术全面整合 [49] - 在线高精地图技术为无图NOA量产方案核心 [51] 直播与专家分享 - 组织超过100场专业技术直播,邀请行业大佬分享最新研究成果 [77] - 直播内容涵盖VLA、V2X、3D检测、扩散模型等前沿技术 [77] - 分享包括Impompta VLA、LingCoop、Diffusion planner等创新工作 [77] 社区互动与支持 - 提供星友面对面线上环节,计划九月份推出以解决实际工作问题 [1] - 成员可自由提问职业规划、研究方向等问题并获得解答 [78] - 社区交流话题包括传统规控转VLA、多模态大模型数据集、3DGS闭环仿真等 [15] 资源汇总与工具 - 汇总国内外自动驾驶高校团队和公司,覆盖RoboTaxi、重卡业务及造车新势力 [22][24] - 整理自动驾驶及CV相关书籍,包括数学基础、计算机视觉、深度学习等 [26] - 开源数据集梳理涵盖通用CV数据集、感知数据集及多模态大模型数据集 [30] - 提供标注工具、仿真框架、传感器标定工具等实用资源汇总 [5] - 实战落地内容包括模型压缩、部署优化及自动驾驶100问系列 [5] 会员福利 - 提供星球内部专属学习视频及文档 [19] - 第一时间掌握学术进展和工业落地应用 [19] - 对接企业工作岗位推荐和行业机会挖掘 [19]
死磕技术的自动驾驶黄埔军校,三周年了~
自动驾驶之心· 2025-07-19 14:32
业务发展 - 打造了四个IP矩阵:自动驾驶之心、具身智能之心、3D视觉之心、大模型之心,覆盖知识星球、公众号、视频号、哔哩哔哩、知乎等平台 [2] - 从纯线上教育转型为全栈式服务平台,新增硬件业务、论文辅导和求职业务,并在杭州设立线下办公室 [2] - 知识付费仍是核心业务,但重点拓展了硬件教具、线下培训和求职招聘等多元化服务 [2] 技术方向 - 自动驾驶行业正经历大模型引发的智驾方案升级,从VLM/VLA向更先进的端到端解决方案演进 [2] - 具身智能和大模型是重点孵化方向,已举办多期圆桌论坛,受到学术界和产业界广泛关注 [2] - 视觉大语言模型(VLM)在自动驾驶中的应用包括预训练、迁移学习和知识蒸馏等多个技术分支 [9][12][13] 社区建设 - 自动驾驶之心知识星球已成为国内最大的自动驾驶技术社区,拥有近4000名成员和100+行业专家 [4] - 社区覆盖30+自动驾驶技术学习路线,包括端到端自动驾驶、BEV感知、Occupancy等前沿方向 [4] - 每周活跃度位居国内前20,注重成员积极性和技术交流 [4] 内容体系 - 知识星球包含四大板块:技术领域分类汇总、科研界顶级大佬直播、求职资料分享和痛点问题解答 [7] - 整理了视觉大语言模型、世界模型、扩散模型和端到端自动驾驶四大前沿技术方向的资源 [6] - 汇总了多个Awesome资源库,涵盖VLM架构、推理策略、安全隐私等细分领域 [8] 数据集资源 - 整理了VLM预训练使用的多个大型数据集,包括LAION5B(5B图文对)、WuKong(100M中文图文对)等 [15] - 汇总了自动驾驶相关数据集,如nuScenes、Waymo Open Dataset、BDD100K等,涵盖感知、预测、规划等任务 [21][22] - 收集了语言增强的自动驾驶系统数据集,支持自然语言导航和空间推理等高级功能 [22] 应用领域 - 智能交通领域应用包括语言引导车辆检索、视觉问答和视频异常识别等技术 [23] - 自动驾驶感知方向涉及行人检测、3D目标检测和开放词汇语义分割等任务 [24] - 定位规划领域探索语言引导导航、轨迹预测和运动规划等解决方案 [25] 行业趋势 - 世界模型在自动驾驶中快速发展,涵盖3D场景理解、未来场景演化和物理原理建模等方向 [30][31] - 扩散模型在自动驾驶中的应用包括场景生成、数据增强和轨迹预测等多个方面 [33][39] - 端到端自动驾驶研究聚焦多模态融合、可解释性和长尾分布处理等关键问题 [45][55]
死磕技术的自动驾驶黄埔军校,三周年了。。。
自动驾驶之心· 2025-07-19 11:04
自动驾驶技术发展现状 - 自动驾驶技术正处于从辅助驾驶(L2/L3)向高阶无人驾驶(L4/L5)跨越的关键阶段 [2] - 2025年自动驾驶、具身智能、大模型Agent三大赛道是AI竞争高地 [2] - 端到端自动驾驶成为主流学习方向,建议从BEV感知开始逐步深入 [2] 自动驾驶技术社区 - 自动驾驶之心知识星球是国内最大的自动驾驶学习社区,拥有近4000名成员 [2] - 社区汇聚100+行业专家,提供30+技术方向学习路线 [2] - 覆盖端到端自动驾驶、世界模型、视觉大语言模型等前沿方向 [2][4] 视觉大语言模型研究 - CVPR 2024发布多篇视觉语言模型预训练论文,涉及效率提升和公平性优化 [11] - 视觉语言模型评估涵盖图像分类、文本检索、行为识别等任务 [16][17][18] - 大规模预训练数据集包括LAION5B(50亿图文对)、WebLI(120亿图文对) [15] 自动驾驶数据集 - 主流自动驾驶数据集包括nuScenes、Waymo Open Dataset、BDD100K等 [21] - 语言增强数据集支持自然语言导航、视觉问答等任务 [22] - 图像分类评估数据集包含ImageNet-1k(128万训练图)、CIFAR-100等 [16] 技术应用领域 - 智能交通领域应用包括语言引导车辆检索、视觉问答系统 [23] - 自动驾驶感知方向研究语言引导3D检测、开放词汇分割等任务 [24] - 决策控制领域探索大语言模型在轨迹预测和运动规划中的应用 [25][26] 世界模型研究进展 - 2024年发布DriveWorld、GAIA-1等驾驶世界模型,支持场景生成与理解 [30][32] - 世界模型可预测未来视觉观测并辅助规划决策 [32] - 研究涵盖4D场景重建、占用预测等方向 [32] 扩散模型应用 - 扩散模型在自动驾驶中用于场景生成、数据增强和轨迹预测 [39] - CVPR 2024发布MagicDriveDiT等街景生成模型 [39] - 研究聚焦时空一致性、多视角生成等挑战 [39] 端到端自动驾驶 - 方法分为模仿学习、强化学习和多任务学习三大类 [61] - 最新工作如DriveGPT4、DriveMLM探索大模型与规划控制结合 [27][51] - 挑战包括长尾分布处理、安全验证等 [55][57] 行业资源与生态 - 社区提供TensorRT部署、BEV感知等工程问题解决方案 [71][73] - 与地平线、蔚来等公司建立内推渠道 [110] - 成员来自卡耐基梅隆、清华等高校及头部自动驾驶公司 [106][107]
4000人的自动驾驶黄埔军校,死磕技术分享与求职交流~
自动驾驶之心· 2025-07-12 22:43
智能驾驶行业现状 - 2025年智能驾驶行业呈现分化态势,部分从业者转向具身智能领域,但多数仍坚守原赛道 [2] - 头部企业持续高薪招聘人才,应届生薪资可达45k*16薪,超越2-3年经验社招水平 [2] - 行业技术迭代周期明显缩短,2025年技术基调确定为VLA(视觉语言行动)架构 [7] 核心技术趋势 - 大模型赋能端到端2.0技术成为主流方向,涵盖视觉大语言模型基座、扩散模型轨迹预测等技术栈 [7] - 世界模型成为关键技术,涉及3DGS生成技术、闭环仿真等前沿领域 [7] - 视觉语言模型(VLM)在感知任务中应用广泛,包括预训练、迁移学习和知识蒸馏等方法 [19][20][21] 自动驾驶社区生态 - 自动驾驶之心知识星球已成为国内最大专业社区,拥有近4000名成员和100+行业专家 [11] - 社区构建完整技术闭环,涵盖课程体系(9大视频教程)、硬件开发(标定板、机械臂)和实战项目 [3] - 与近200家企业建立合作,包括小米汽车、地平线、英伟达等头部公司,提供内推渠道 [7][66] 行业应用场景 - 智能交通领域应用语言引导车辆检索、视觉问答等技术,提升系统交互能力 [30] - 自动驾驶感知模块融合视觉语言模型,实现开放词汇目标检测和语义分割 [31] - 决策控制系统结合大语言模型,开发可解释的轨迹预测和运动规划方案 [32][33] 数据集发展 - 视觉语言预训练数据集规模显著扩大,LAION5B包含50亿图文对,WebLI达120亿规模 [23] - 自动驾驶专用数据集持续丰富,NuScenes、Waymo Open Dataset支持多任务学习 [28] - 语言增强数据集兴起,如NuScenes-QA支持视觉问答任务,推动人车交互发展 [29] 人才发展体系 - 社区建立30+技术学习路线,覆盖BEV感知、Occupancy等40个方向 [11] - 求职板块包含100问系列(TensorRT部署、BEV感知等)和面经分享,直击企业需求 [66][68] - 直播体系每年规划100场,邀请CVPR/ICCV作者和车企专家分享量产经验 [15][16]
4000人的自动驾驶黄埔军校,死磕技术分享与求职交流~
自动驾驶之心· 2025-07-12 13:41
自动驾驶行业现状与趋势 - 2025年自动驾驶行业面临技术迭代加速和人才竞争加剧的局面,部分从业者转向具身智能和机器人领域,但仍有大量人才坚守[2] - 行业薪资水平显示头部企业仍保持高投入,应届生可达45k*16薪,超越2-3年经验社招人员[2] - 技术迭代周期从2024年下半年开始明显缩短,2025年技术基调确定为VLA(视觉语言动作)2.0体系[8] - 前沿技术方向包括:视觉大语言模型基座、扩散模型端到端轨迹预测、3D高斯泼溅生成技术、世界模型等[8] 自动驾驶技术社区与资源 - 自动驾驶之心知识星球已成为国内最大专业社区,拥有近4000名成员和100+行业专家[13][14] - 社区内容覆盖30+技术方向学习路线,包含感知、定位、规划控制等全栈技术栈[14] - 提供独家资源包括:千元级付费课程8折、100+场学术/工业界直播回放、近5000份干货资料[19] - 每周举办1-2场前沿技术直播,2025年重点聚焦VLA、大模型、扩散模型等方向[21][22] 关键技术发展方向 视觉语言模型(VLM) - 形成完整技术体系包括预训练、迁移学习、知识蒸馏等方向,相关论文在CVPR2024等顶会集中爆发[24][25] - 应用领域覆盖智能交通和自动驾驶,包括语言引导车辆检索、视觉问答、异常识别等[37][38] - 基础理论持续创新,2024年出现RLAIF-V、RLHF-V等强化学习对齐方法[25] 端到端自动驾驶 - 形成两大技术路线:开环端到端1.0和闭环端到端2.0(VLA体系)[50] - 关键挑战包括:感知-规划耦合、长尾场景处理、可解释性等[55][62] - 典型方法包括DriveGPT4、DriveMLM等,结合大语言模型提升解释能力[59] 世界模型与扩散模型 - 世界模型成为研究热点,2024-2025年出现HERMES、DrivingWorld等统一框架[43][45] - 扩散模型在3D视觉、视频生成等领域应用广泛,相关综述论文超过20篇[47][48] - 自动驾驶应用包括DriveDreamer系列、MagicDriveDiT等街景生成方法[42][51] 行业人才发展 - 技术岗位需求呈现两极分化:基础算法岗竞争激烈,新兴领域(VLA、世界模型等)人才紧缺[2][97] - 职业发展建议:传统SLAM可转向3D重建,控制背景可拓展规划算法,感知方向需关注端到端技术[99] - 学习路径强调体系化:建议通过社区获取领域知识图谱、面试经验和岗位需求信息[3][14] 企业合作与生态 - 社区与近200家企业建立合作,包括小米、地平线、英伟达等头部公司[7][109] - 提供校招/社招内推渠道,简历可直达企业HR,覆盖算法、工程等多个岗位[10][19] - 资源对接涵盖学术机构(清华、ETH等)和工业界(华为、大疆等)[7][106]